Identification of novel antistaphylococcal hit compounds

Berge A, Carlsén C, Petropoulos A, Gadler F, Rasmussen M. Staphylococcus aureus bacteraemia, cardiac implantable electronic device, and the risk of endocarditis: a retrospective population-based cohort study. Eur J Clin Microbiol Infect Dis. 2023;42:583–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

García de la Mària C, et al. Emerging issues on Staphylococcus aureus endocarditis and the role in therapy of daptomycin plus fosfomycin. Expert Rev Anti Infect Ther. 2023;21:281–93.

Article  PubMed  Google Scholar 

Tournaye E, Hollering P, De Roover D, Dossche K, Vercauteren SRW. Staphylococcus aureus sepsis and hemoptysis as messengers of a rather impractically located mycotic aneurysm. Acta Chir Belg. 2023;123:430–35.

Article  PubMed  Google Scholar 

Chen Y, et al. The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis. Front Immunol. 2023;14:1219895.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Soest TM, et al. Community-acquired Staphylococcus aureus meningitis in adults. J Infect. 2023;86:239–44.

Article  PubMed  Google Scholar 

Venkateswaran P, et al. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol. 2023;13:1159798.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gherardi G. Staphylococcus aureus Infection: Pathogenesis and antimicrobial resistance. Int J Mol Sci. 2023;24:8182.

Article  PubMed  PubMed Central  Google Scholar 

Huynh TQ, et al. Genomic alterations involved in fluoroquinolone resistance development in Staphylococcus aureus. PLoS One. 2023;18:e0287973.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ippolito G, Leone S, Lauria FN, Nicastri E, Wenzel RP. Methicillin-resistant Staphylococcus aureus:the superbug. Int J Infect Dis. 2010;14:S7–S11.

Article  PubMed  Google Scholar 

Kaur DC, Chate SS. Study of antibiotic resistance pattern in methicillin-resistant Staphylococcus aureus with special reference to newer antibiotic. J Glob Infect Dis. 2015;7:78–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arunkumar V, Prabagaravarthanan R, Bhaskar M. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infections among patients admitted in critical care units in a tertiary care hospital. Int J Res Med Sci. 2017;5:2362–66.

Article  Google Scholar 

McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90:269–81.

CAS  PubMed  PubMed Central  Google Scholar 

García-Angulo VA, et al. Isolation and first draft genome sequence of a linezolid-dependent Staphylococcus aureus clinical strain. Future Microbiol. 2020;15:1123–29.

Article  PubMed  Google Scholar 

Yoo IY, Kang OK, Shim HJ, Huh HJ, Lee NY. Linezolid resistance in methicillin-resistant Staphylococcus aureus in Korea: high rate of false resistance to linezolid by the VITEK 2 system. Ann Lab Med. 2020;40:57–62.

Article  CAS  PubMed  Google Scholar 

Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy. 2023;43:816–32.

Article  CAS  PubMed  Google Scholar 

Pang L, Weeks SD, Van Aerschot A. Aminoacyl-tRNA synthetases as valuable targets for antimicrobial drug discovery. Int J Mol Sci. 2021;22:1750.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Francklyn CS, Mullen P. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem. 2019;294:5365–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng Y, Roy H, Patil PB, Ibba M, Chen S. Characterization of two seryl-tRNA synthetases in albomycin-producing Streptomyces sp. strain ATCC 700974. Antimicrob Agents Chemother. 2009;53:4619–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Battenberg OA, Yang Y, Verhelst SH, Sieber SA. Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification. Mol Biosyst. 2013;9:343–51.

Article  CAS  PubMed  Google Scholar 

Cain R, et al. Structure-guided enhancement of selectivity of chemical probe inhibitors targeting bacterial seryl-tRNA synthetase. J Med Chem. 2019;62:9703–17.

Article  CAS  PubMed  Google Scholar 

Bodian DL, et al. Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry. 1993;32:2967–78.

Article  CAS  PubMed  Google Scholar 

Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput-Aided Mol Des. 2001;15:411–28.

Article  CAS  PubMed  Google Scholar 

Ring CS, et al. Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci USA. 1993;90:3583–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM. Structure-based discovery of inhibitors of thymidylate synthase. Science. 1993;259:1445–50.

Article  Google Scholar 

Yakovenko OY, Oliferenko A, Golub A, Bdzhola V, Yarmoluk S. The new method of distribution integrals evaluations for high throughput virtual screening. Ukr Bioorg Acta. 2007;1:52–62.

Google Scholar 

Yakovenko O, Oliferenko AA, Bdzhola VG, Palyulin VA, Zefirov NS. Kirchhoff atomic charges fitted to multipole moments: implementation for a virtual scrrening system. J Comput Chem. 2008;29:1332–43.

Article  CAS  PubMed  Google Scholar 

Kovalenko OP, et al. Dual-target inhibitors of mycobacterial aminoacyl-tRNA synthetases among N-benzylidene-N’-thiazol-2-yl-hydrazines. Medchemcomm. 2019;10:2161–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Discovery Studio Visualizer 4.0. https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php, (accessed May 2019).

Studier F. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005;41:207–34.

Article  CAS  PubMed  Google Scholar 

Volynets G, et al. Identification of novel antistaphylococcal hit compounds targeting sortase A. Molecules. 2021;26:7095.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rybak MY, et al. Rational design of hit compounds targeting Staphylococcus aureus threonyl-tRNA synthetase. ACS Omega. 2021;6:24910–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance, Version 1.0, December 2013. EUCAST; Växjö, Sweden: 2013.

Comments (0)

No login
gif