Couch JN. Actinoplanes, a new genus of the Actinomycetales. J Elisha Mitchell Sci Soc. 1950;66:87–92.
Stackebrandt E, Kroppenstedt RM. Union of the genera Actinoplanes couch, Ampullariella couch, and Amorphosporangium couch in a redefined genus Actinoplanes. Syst Appl Microbiol. 1987;9:110–4.
Marcone GL, et al. Classification of Actinoplanes sp. ATCC 33076, an actinomycete that produces the glycolipodepsipeptide antibiotic ramoplanin, as Actinoplanes ramoplaninifer sp. nov. Int J Syst Evol Microbiol. 2017;67:4181–8.
Article CAS PubMed Google Scholar
Habib N, et al. Actinoplanes deserti sp. nov., isolated from a desert soil sample. Antonie Van Leeuwenhoek. 2018;111:2303–10.
Article CAS PubMed Google Scholar
Luo X, et al. Actinoplanes flavus sp. nov., a novel cellulase-producing actinobacterium isolated from coconut palm rhizosphere soil. Int J Syst Evol Microbiol. 2021;71:004990.
Ding L-M, et al. Three novel Actinoplanes species isolated by using polyaspartic acid as a water-retaining agent for the enrichment in situ. Int J Syst Evol Microbiol. 2023;73:005705.
Goodfellow M, Stanton LJ, Simpson K, Minnikin DE. Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol. 1990;136:19–36.
Tamura T, Hatano K. Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and ‘Actinoplanes aurantiacus’ to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol. 2001;51:2119–25.
Article CAS PubMed Google Scholar
Sazak A, Sahin N, Camas M. Actinoplanes abujensis sp. nov., isolated from Nigerian arid soil. Int J Syst Evol Microbiol. 2012;62:960–5.
Article CAS PubMed Google Scholar
Bardone MR, Paternoster M, Coronelli C. Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. sp. II. Extraction and chemical characterization. J Antibiot. 1978;31:170–7.
Debono M, et al. Actaplanin, new glycopeptide antibiotics produced by Actinoplanes missouriensis. The isolation and preliminary chemical characterization of actaplanin. J Antibiot. 1984;37:85–95.
Wagman GH, et al. New polyene antifungal antibiotic produced by a species of Actinoplanes. Antimicrob Agents Chemother. 1975;7:457–61.
Article CAS PubMed PubMed Central Google Scholar
Weber T, et al. Molecular analysis of the kirromycin biosynthetic gene cluster revealed β-alanine as precursor of the pyridone moiety. Chem Biol. 2008;15:175–88.
Article CAS PubMed Google Scholar
Wolf H, Chinali G, Parmeggiani A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci USA 1974;71:4910–4.
Article CAS PubMed PubMed Central Google Scholar
Beretta G, Le Monnier F, Selva E, Marinelli F. A novel producer of the antibiotic kirromycin belonging to the genus Actinoplanes. J Antibiot. 1993;46:1175–7.
Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.
Wakisaka Y, Kawamura Y, Yasuda Y, Koizumi K, Nishimoto Y. A selective isolation procedure for Micromonospora. J Antibiot. 1982;35:822–36.
Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta. 1963;72:619–29.
Article CAS PubMed Google Scholar
Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.
Article CAS PubMed PubMed Central Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article CAS PubMed Google Scholar
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.
Article CAS PubMed PubMed Central Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. J Mol Biol Evol. 1987;4:406–25.
Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.
Article CAS PubMed Google Scholar
Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20:406–16.
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
Article CAS PubMed PubMed Central Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.
Article PubMed PubMed Central Google Scholar
Myers EW, et al. A whole-genome assembly of Drosophila. Science. 2000;287:2196–204.
Article CAS PubMed Google Scholar
Walker BJ, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963.
Article PubMed PubMed Central Google Scholar
Chin CS, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563–9.
Article CAS PubMed Google Scholar
Blin K, et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45:36–41.
Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60.
Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110:1281–6.
Article CAS PubMed Google Scholar
Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.
Article PubMed PubMed Central Google Scholar
Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32:2798–800.
Comments (0)