Ahsan A, Liu M, Zheng Y, Yan W, Pan L, Li Y, Ma S, Zhang X, Cao M, Wu Z, Hu W, Chen Z, Zhang X (2021) Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sinica B 11(7):1708–1720. https://doi.org/10.1016/j.apsb.2020.10.018
Alekseev AE, Park S, Pimenov OY, Reyes S, Terzic A (2019) Sarcolemmal α2-adrenoceptors in feedback control of myocardial response to sympathetic challenge. Pharmacol Ther 197:179–190. https://doi.org/10.1016/j.pharmthera.2019.01.007
Article CAS PubMed Google Scholar
Balasubramanian M, Kuberan A, Rawat A, Dhandapani S, Panda N, Kumar A, Sahoo AK, Kumar M, Sharma T, Garcia PS, Bhagat H (2021) Effect of general anesthetics on Caspase-3 levels in patients with Aneurysmal Subarachnoid Hemorrhage: a preliminary study. J Neurosurg Anesthesiol 33(2):172–176. https://doi.org/10.1097/ANA.0000000000000648
Bell MT, Puskas F, Smith PD, Agoston VA, Fullerton DA, Meng X, Weyant MJ, Reece TB (2012) Attenuation of spinal cord ischemia-reperfusion injury by specific α-2a receptor activation with dexmedetomidine. J Vasc Surg 56(5):1398–1402. https://doi.org/10.1016/j.jvs.2012.04.012
Bell MT, Puskas F, Bennett DT, Herson PS, Quillinan N, Fullerton DA, Reece TB (2014) Dexmedetomidine, an α-2a adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia-reperfusion. J Thorac Cardiovasc Surg 147(1):500–506. https://doi.org/10.1016/j.jtcvs.2013.07.043
Article CAS PubMed Google Scholar
Berezhnov AV, Fedotova EI, Nenov MN, Kasymov VA, Pimenov OY, Dynnik VV (2020) Dissecting cellular mechanisms of long-chain acylcarnitines-driven cardiotoxicity: disturbance of calcium homeostasis, activation of Ca2+-dependent phospholipases, and mitochondrial energetics collapse. Int J Mol Sci 21(20):7461. https://doi.org/10.3390/ijms21207461
Article CAS PubMed PubMed Central Google Scholar
Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40(5):e331–339. https://doi.org/10.1161/STROKEAHA.108.531632
Cameron OG, Abelson JL, Young EA (2004) Anxious and depressive disorders and their comorbidity: effect on central nervous system noradrenergic function. Biol Psychiatry 56(11):875–883. https://doi.org/10.1016/j.biopsych.2004.08.007
Article CAS PubMed Google Scholar
Chen J, Zhang J, Yang DD, Li ZC, Zhao B, Chen Y, He Z (2022) Clonidine ameliorates cerebral ischemia-reperfusion injury by up-regulating the GluN3 subunits of NMDA receptor. Metab Brain Dis 37(6):1829–1841. https://doi.org/10.1007/s11011-022-01028-y
Article CAS PubMed Google Scholar
Cheng T, Liu D, Griffin JH, Fernández JA, Castellino F, Rosen ED, Fukudome K, Zlokovic BV (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9(3):338–342. https://doi.org/10.1038/nm826
Article CAS PubMed Google Scholar
Chiang T, Messing RO, Chou WH (2011) Mouse model of middle cerebral artery occlusion. J Visualized Experiments: JoVE 482761. https://doi.org/10.3791/2761
Choi IY, Hwang L, Jin JJ, Ko IG, Kim SE, Shin MS, Shin KM, Kim CJ, Park SW, Han JH, Yi JW (2017) Dexmedetomidine alleviates cerebral ischemia-induced short-term memory impairment by inhibiting the expression of apoptosis-related molecules in the hippocampus of gerbils. Experimental Therapeutic Med 13(1):107–116. https://doi.org/10.3892/etm.2016.3956
Cottingham C, Wang Q (2012) α2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev 36(10):2214–2225. https://doi.org/10.1016/j.neubiorev.2012.07.011
Article CAS PubMed PubMed Central Google Scholar
Docherty JR (2019) The pharmacology of α1-adrenoceptor subtypes. Eur J Pharmacol 855:305–320. https://doi.org/10.1016/j.ejphar.2019.04.047
Article CAS PubMed Google Scholar
Donello JE, Padillo EU, Webster ML, Wheeler LA, Gil DW (2001) Alpha(2)-Adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther 296(1):216–223
Farooq MU, Goshgarian C, Min J, Gorelick PB (2016) Pathophysiology and management of reperfusion injury and hyperperfusion syndrome after carotid endarterectomy and carotid artery stenting. Exp Transl Stroke Med 8(1):7. https://doi.org/10.1186/s13231-016-0021-2
Farzam K, Kidron A, Lakhkar AD (2023) Adrenergic drugs. StatPearls. StatPearls Publishing
Fels JA, Manfredi G (2019) Sex differences in Ischemia/Reperfusion Injury: the role of mitochondrial permeability transition. Neurochem Res 44(10):2336–2345. https://doi.org/10.1007/s11064-019-02769-6
Article CAS PubMed PubMed Central Google Scholar
Freeman KA, Puskas F, Bell MT, Mares JM, Foley LS, Weyant MJ, Cleveland JC Jr, Fullerton DA, Meng X, Herson PS, Reece TB (2015) Alpha-2 agonist attenuates ischemic injury in spinal cord neurons. J Surg Res 195(1):21–28. https://doi.org/10.1016/j.jss.2014.12.033
Article CAS PubMed Google Scholar
Gao J, Liu J, Li Y, Liu J, Wang H, Chai M, Dong Y, Zhang Z, Su G, Wang M (2023) Targeting p53 for neuroinflammation: new therapeutic strategies in ischemic stroke. J Neurosci Res 101(9):1393–1408. https://doi.org/10.1002/jnr.25200
Article CAS PubMed Google Scholar
Geevarghese M 3rd, Patel K, Gulati A, Ranjan AK (2023) Role of adrenergic receptors in shock. Front Physiol 14:1094591. https://doi.org/10.3389/fphys.2023.1094591
Gilsbach R, Hein L (2012) Are the pharmacology and physiology of α2 adrenoceptors determined by α2-heteroreceptors and autoreceptors respectively? Br J Pharmacol 165(1):90–102. https://doi.org/10.1111/j.1476-5381.2011.01533.x
Gupta S, Sharma B (2014) Pharmacological modulation of I(1)-imidazoline and α2-adrenoceptors in sub acute brain ischemia induced vascular dementia. Eur J Pharmacol 723:80–90. https://doi.org/10.1016/j.ejphar.2013.12.003
Article CAS PubMed Google Scholar
Guzenko VV, Bachurin SS, Khaitin AM, Dzreyan VA, Kalyuzhnaya YN, Bin H, Demyanenko SV (2023) Acetylation of p53 in the cerebral cortex after photothrombotic stroke. Transl Stroke Res. https://doi.org/10.1007/s12975-023-01183-z. Advance online publication
Hadisaputri YE, Andika R, Sopyan I, Zuhrotun A, Maharani R, Rachmat R, Abdulah R (2021) Caspase cascade activation during apoptotic cell death of human lung carcinoma cells A549 induced by Marine Sponge Callyspongia aerizusa. Drug Des Dev Ther 15:1357–1368. https://doi.org/10.2147/DDDT.S282913
Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776. https://doi.org/10.1038/35037710
Hong LZ, Zhao XY, Zhang HL (2010) p53-mediated neuronal cell death in ischemic brain injury. Neurosci Bull 26(3):232–240. https://doi.org/10.1007/s12264-010-1111-0
Jellish WS, Murdoch J, Kindel G, Zhang X, White FA (2005) The effect of clonidine on cell survival, glutamate, and aspartate release in normo- and hyperglycemic rats after near complete forebrain ischemia. Exp Brain Res 167(4):526–534. https://doi.org/10.1007/s00221-005-0064-4
Article CAS PubMed Google Scholar
Jurcau A, Simion A (2021) Neuroinflammation in cerebral ischemia and Ischemia/Reperfusion injuries: from pathophysiology to therapeutic strategies. Int J Mol Sci 23(1):14. https://doi.org/10.3390/ijms23010014
Article CAS PubMed PubMed Central Google Scholar
Kable JW, Murrin LC, Bylund DB (2000) In vivo gene modification elucidates subtype-specific functions of alpha(2)-adrenergic receptors. J Pharmacol Exp Ther 293(1):1–7
Kang T, Qin X, Lei Q, Yang Q (2023) BRAP silencing protects against neuronal inflammation, oxidative stress and apoptosis in cerebral ischemia-reperfusion injury by promoting PON1 expression. Environ Toxicol. 10.1002/tox.23899. Advance online publication https://doi.org/10.1002/tox.23899
Kearns S, Lurz R, Orlova EV, Okorokov AL (2016) Two p53 tetramers bind one consensus DNA response element. Nucleic Acids Res 44(13):6185–6199. https://doi.org/10.1093/nar/gkw215
Article CAS PubMed PubMed Central Google Scholar
Khan H, Kaur Grewal A, Gurjeet Singh T (2022) Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion 66:54–66. https://doi.org/10.1016/j.mito.2022.08.001
Kong C, Miao F, Wu Y, Wang T (2019) Oxycodone suppresses the apoptosis of hippocampal neurons induced by oxygen-glucose deprivation/recovery through caspase-dependent and caspase-independent pathways via κ- and δ-opioid receptors in rats. Brain Res 1721:146319. https://doi.org/10.1016/j.brainres.2019.146319
Krupinski J, Lopez E, Marti E, Ferrer I (2000) Expression of caspases and their substrates in the rat model of focal cerebral ischemia. Neurobiol Dis 7(4):332–342. https://doi.org/10.1006/nbdi.2000.0310
Comments (0)