Al-Chalabi A, Brown RH (2018) Finding a treatment for ALS — will gene editing cut it? N Engl J Med 378. https://doi.org/10.1056/nejmcibr1716741
Alvarez-Sanchez N, Dunn SE (2023) Potential biological contributers to the sex difference in multiple sclerosis progression. Front Immunol 14. https://doi.org/10.3389/fimmu.2023.1175874
Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504. https://doi.org/10.1038/nature12726
Badawy AAB (2017) Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 10. https://doi.org/10.1177/1178646917691938
Beal MF, Matson WR, Swartz KJ et al (1990) Kynurenine pathway measurements in Huntington’s Disease Striatum: evidence for reduced formation of Kynurenic Acid. J Neurochem 55. https://doi.org/10.1111/j.1471-4159.1990.tb03143.x
bei Bo T, Wen J, Zhao Y, chun et al (2020) Bifidobacterium pseudolongum reduces triglycerides by modulating gut microbiota in mice fed high-fat food. J Steroid Biochem Mol Biol 198. https://doi.org/10.1016/j.jsbmb.2020.105602
Berer K, Mues M, Koutrolos M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479. https://doi.org/10.1038/nature10554
Berer K, Gerdes LA, Cekanaviciute E et al (2017) Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 114. https://doi.org/10.1073/pnas.1711233114
Biagi E, Nylund L, Candela M et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5. https://doi.org/10.1371/journal.pone.0010667
Biernacki T, Sandi D, Bencsik K, Vécsei L (2020) Kynurenines in the pathogenesis of multiple sclerosis: therapeutic perspectives. Cells 9. https://doi.org/10.3390/cells9061564
Bishop M, Rumrill PD (2015) Multiple sclerosis: etiology, symptoms, incidence and prevalence, and implications for community living and employment. Work 52. https://doi.org/10.3233/WOR-152200
Brandscheid C, Schuck F, Reinhardt S et al (2017) Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimer’s Dis 56. https://doi.org/10.3233/JAD-160926
Brenner SR (2013) Blue-green algae or cyanobacteria in the intestinal micro-flora may produce neurotoxins such as Beta-N-Methylamino-l-Alanine (BMAA) which may be related to development of amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson-Dementia-Complex in humans and equine motor neuron disease in horses. Med Hypotheses 80. https://doi.org/10.1016/j.mehy.2012.10.010
Burokas A, Moloney RD, Dinan TG, Cryan JF (2015) Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 91. https://doi.org/10.1016/bs.aambs.2015.02.001
Cattaneo A, Cattane N, Galluzzi S et al (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49. https://doi.org/10.1016/j.neurobiolaging.2016.08.019
Cekanaviciute E, Yoo BB, Runia TF et al (2017) Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A 114. https://doi.org/10.1073/pnas.1711235114
Challis C, Hori A, Sampson TR et al (2020) Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat Neurosci 23:327–336. https://doi.org/10.1038/s41593-020-0589-7
Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111. https://doi.org/10.1073/pnas.1322269111
Chen L, Chen Y, Zhao M et al (2020) Changes in the concentrations of trimethylamine N-oxide (TMAO) and its precursors in patients with amyotrophic lateral sclerosis. Sci Rep 10. https://doi.org/10.1038/s41598-020-72184-3
Chen S-J, Wu Y-J, Chen C-C et al (2023) Plasma metabolites of aromatic amino acids associate with clinical severity and gut microbiota of Parkinson’s disease. Npj Park Dis 9:165. https://doi.org/10.1038/s41531-023-00612-y
Choi JG, Kim N, Ju IG et al (2018) Oral administration of Proteus mirabilis damages dopaminergic neurons and motor functions in mice. Sci Rep 8. https://doi.org/10.1038/s41598-018-19646-x
Christofides J, Bridel M, Egerton M et al (2006) Blood 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and melatonin levels in patients with either Huntington’s disease or chronic brain injury. J Neurochem 97. https://doi.org/10.1111/j.1471-4159.2006.03807.x
Chung SJ, Rim JH, Ji D et al (2021) Gut microbiota-derived metabolite trimethylamine N-oxide as a biomarker in early Parkinson’s disease. Nutrition 83:111090. https://doi.org/10.1016/j.nut.2020.111090
Cignarella F, Cantoni C, Ghezzi L et al (2018) Intermittent fasting confers Protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 27. https://doi.org/10.1016/j.cmet.2018.05.006
Compston A, Coles A (2002) Multiple sclerosis. Lancet 359:1221–1231. https://doi.org/10.1016/S0140-6736(02)08220-X
Correale J, Hohlfeld R, Baranzini SE (2022) The role of the gut microbiota in multiple sclerosis. Nat Rev Neurol 18:544–558. https://doi.org/10.1038/s41582-022-00697-8
Cosorich I, Dalla-Costa G, Sorini C et al (2017) High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv 3. https://doi.org/10.1126/sciadv.1700492
Cox LM, Schafer MJ, Sohn J et al (2019) Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci Rep 9. https://doi.org/10.1038/s41598-019-54187-x
Cryan JF, O’Riordan KJ, Sandhu K et al (2020) The gut microbiome in neurological disorders. Lancet Neurol 19. https://doi.org/10.1016/S1474-4422(19)30356-4
Del Rio D, Zimetti F, Caffarra P et al (2017) The gut microbial metabolite Trimethylamine-N-Oxide is present in human cerebrospinal fluid. Nutrients 9:1053. https://doi.org/10.3390/nu9101053
Dodiya HB, Kuntz T, Shaik SM et al (2019) Sex-specific effects of microbiome perturbations on cerebral ab amyloidosis and microglia phenotypes. J Exp Med 216. https://doi.org/10.1084/jem.20182386
Dodiya HB, Frith M, Sidebottom A et al (2020) Synergistic depletion of gut microbial consortia, but not individual antibiotics, reduces amyloidosis in APPPS1-21 Alzheimer’s transgenic mice. Sci Rep 10. https://doi.org/10.1038/s41598-020-64797-5
Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107. https://doi.org/10.1073/pnas.1002601107
Du G, Dong W, Yang Q et al (2021) Altered gut microbiota related to inflammatory responses in patients with Huntington’s Disease. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.603594
Eratne D, Loi SM, Farrand S et al (2018) Alzheimer’s disease: clinical update on epidemiology, pathophysiology and diagnosis. Australas Psychiatry 26. https://doi.org/10.1177/1039856218762308
Erkkinen MG, Kim MO, Geschwind MD (2018) Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10. https://doi.org/10.1101/cshperspect.a033118
Etxeberria-Rekalde E, Alzola-Aldamizetxebarria S, Flunkert S et al (2021) Quantification of Huntington’s Disease related markers in the R6/2 mouse model. Front Mol Neurosci 13. https://doi.org/10.3389/fnmol.2020.617229
Fallani M, Amarri S, Uusijarvi A et al (2011) Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157. https://doi.org/10.1099/mic.0.042143-0
Fang X, Wang X, Yang S et al (2016) Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01479
Fang P, Kazmi SA, Jameson KG, Hsiao EY (2020) The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 28 https://doi.org/10.1016/j.chom.2020.06.008
Farshim PP, Bates GP (2018) Mouse models of Huntington’s disease. In: Methods in molecular biology. https://doi.org/10.1007/978-1-4939-7825-0_6
Felice VD, Quigley EM, Sullivan AM et al (2016) Microbiota-gut-brain signalling in Parkinson’s disease: implications for non-motor symptoms. Park Relat Disord 27. https://doi.org/10.1016/j.parkreldis.2016.03.012
Friedland RP, Chapman MR (2017) The role of microbial amyloid in neurodegeneration. PLoS Pathog 13. https://doi.org/10.1371/journal.ppat.1006654
Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20. https://doi.org/10.1038/nn.4476
Gonzalez A, Stombaugh J, Lozupone C et al (2011) The mind-body-microbial continuum. Dialogues Clin Neurosci 13. https://doi.org/10.31887/dcns.2011.13.1/agonzalez
Govindarajan N, Agis-Balboa RC, Walter J et al (2011) Sodium butyrate improves memory function in an alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimer’s Dis 26. https://doi.org/10.3233/JAD-2011-110080
Gubert C, Kong G, Renoir T, Hannan AJ (2020) Exercise, diet and stress as modulators of gut microbiota: implications for neurodegenerative diseases. Neurobiol Dis 134. https://doi.org/10.1016/j.nbd.2019.104621
Gubert C, Choo JM, Love CJ et al (2022) Faecal microbiota transplant ameliorates gut dysbiosis and cognitive deficits in Huntington’s disease mice. Brain Commun 4. https://doi.org/10.1093/braincomms/fcac205
Harach T, Marungruang N, Duthilleul N et al (2017) Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7. https://doi.org/10.1038/srep41802
Hill-Burns EM, Debelius JW, Morton JT et al (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32. https://doi.org/10.1002/mds.26942
Ho ST, Hsieh YT, Wang SY, Chen MJ (2019) Improving effect of a probiotic mixture on memory and learning abilities in D-galactose–treated aging mice. J Dairy Sci 102. https://doi.org/10.3168/jds.2018-15811
Iebba V, Totino V, Gagliardi A et al (2016) Eubiosis and dysbiosis: the two sides of the microbiota. New Microbiol 39. https://www.newmicrobiologica.org/PUB/allegati_pdf/2016/1/1.pdf
Jaunmuktane Z, Brandner S (2020) Invited review: the role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol 46. https://doi.org/10.1111/nan.12592
Jenkins TA, Nguyen JCD, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8. https://doi.org/10.3390/nu8010056
Kastl AJ, Terry NA, Wu GD, Albenberg LG (2020) The structure and function of the human small intestinal microbiota: current understanding and future directions. Cell Mol Gastroenterol Hepatol 9:33–45. https://doi.org/10.1016/j.jcmgh.2019.07.006
Kaur H, Nagamoto-Combs K, Golovko S et al (2020) Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer’s disease. Neurobiol Aging 92. https://doi.org/10.1016/j.neurobiolaging.2020.04.009
Keshavarzian A, Green SJ, Engen PA et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30. https://doi.org/10.1002/mds.26307
Kim S, Jazwinski SM (2018) The gut microbiota and healthy aging: a mini-review. Gerontology 64. https://doi.org/10.1159/000490615
Kong G, Cao KAL, Judd LM et al (2020) Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 135. https://doi.org/10.1016/j.nbd.2018.09.001
Kong G, Ellul S, Narayana VK et al (2021) An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington’s disease. Neurobiol Dis 148. https://doi.org/10.1016/j.nbd.2020.105199
Kong G, Lê Cao K-A, Hannan AJ (2022) Alterations in the gut fungal community in a mouse model of Huntington’s Disease. Microbiol Spectr 10. https://doi.org/10.1128/spectrum.02192-21
Lai F, Jiang R, Xie W et al (2018) Intestinal Pathology and Gut Microbiota alterations in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s Disease. Neurochem Res 43. https://doi.org/10.1007/s11064-018-2620-x
Lee HJ, Lee KE, Kim JK, Kim DH (2019) Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Sci Rep 9. https://doi.org/10.1038/s41598-019-48342-7
Lee A, Arachchige BJ, Reed S et al (2020) Plasma from some patients with amyotrophic lateral sclerosis exhibits elevated formaldehyde levels. J Neurol Sci 409. https://doi.org/10.1016/j.jns.2019.116589
Li D, Ke Y, Zhan R et al (2018) Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell 17. https://doi.org/10.1111/acel.12768
Liu S, Gao J, Zhu M et al (2020a) Gut microbiota and dysbiosis in Alzheimer’s Disease: implications for pathogenesis and treatment. Mol Neurobiol 57. https://doi.org/10.1007/s12035-020-02073-3
Liu Y, Hou Y, Wang G et al (2020b) Gut microbial metabolites of aromatic amino acids as signals in host–microbe interplay. Trends Endocrinol Metab 31. https://doi.org/10.1016/j.tem.2020.02.012
Longinetti E, Fang F (2019) Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 32. https://doi.org/10.1097/WCO.0000000000000730
Luca M, Mauro M, Di MM, Di, Luca A (2019) Gut microbiota in Alzheimer’s disease, depression, and type 2 diabetes mellitus: the role of oxidative stress. Oxid Med Cell Longev. https://doi.org/10.3390/nu14030668
Maldonado Weng J, Parikh I, Naqib A et al (2019) Synergistic effects of APOE and sex on the gut microbiome of young EFAD transgenic mice. Mol Neurodegener 14. https://doi.org/10.1186/s13024-019-0352-2
Marizzoni M, Provasi S, Cattaneo A, Frisoni GB (2017) Microbiota and neurodegenerative diseases. Curr Opin Neurol 30. https://doi.org/10.1097/WCO.0000000000000496
Minter MR, Zhang C, Leone V et al (2016) Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 6. https://doi.org/10.1038/srep30028
Miraglia F, Ricci A, Rota L, Colla E (2018) Subcellular localization of alpha-synuclein aggregates and their interaction with membranes. Neural Regen Res 13. https://doi.org/10.4103/1673-5374.235013
Morales R, Moreno-Gonzalez I, Soto C (2013) Cross-seeding of misfolded proteins: implications for etiology and pathogenesis of protein misfolding diseases. PLoS Pathog 9. https://doi.org/10.1371/journal.ppat.1003537
Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7. https://doi.org/10.1080/19490976.2015.1134082
Mudimela S, Vishwanath NK, Pillai A et al (2022) Clinical significance and potential role of trimethylamine N-oxide in neurological and neuropsychiatric disorders. Drug Discov Today 27:103334. https://doi.org/10.1016/j.drudis.2022.08.002
Nagpal R, Mainali R, Ahmadi S et al (2018) Gut microbiome and aging: physiological and mechanistic insights. Nutr Healthy Aging 4. https://doi.org/10.3233/NHA-170030
Nation U (2020) World population ageing - Economic and Social Affairs United Nations. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd-2020_world_population_ageing_highlights.pdf
Needham BD, Kaddurah-Daouk R, Mazmanian SK (2020) Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci 21. https://doi.org/10.1038/s41583-020-00381-0
Ohta S (2014) Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther 144. https://doi.org/10.1016/j.pharmthera.2014.04.006
Olsén A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338. https://doi.org/10.1038/338652a0
Ortega MA, Álvarez-Mon MA, García-Montero C et al (2023) Microbiota–gut–brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry. https://doi.org/10.1038/s41380-023-01964-w
Ostojic SM (2018) Inadequate production of H2 by gut microbiota and Parkinson Disease. Trends Endocrinol Metab 29. https://doi.org/10.1016/j.tem.2018.02.006
Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A (2019) The role of microglia and astrocytes in Huntington’s Disease. Front Mol Neurosci 12. https://doi.org/10.3389/fnmol.2019.00258
Pellegrini C, Antonioli L, Colucci R et al (2018) Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol 136. https://doi.org/10.1007/s00401-018-1856-5
Perez-Pardo P, Dodiya HB, Engen PA et al (2018) Gut bacterial composition in a mouse model of Parkinson’s disease. Benef Microbes 9. https://doi.org/10.3920/BM2017.0202
Quigley EMM (2017) Microbiota-Brain-Gut Axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 17. https://doi.org/10.1007/s11910-017-0802-6
Riccio P, Rossano R, Larocca M et al (2016) Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: a pilot study. Exp Biol Med 241. https://doi.org/10.1177/1535370215618462
Roy Sarkar S, Banerjee S (2019) Gut microbiota in neurodegenerative disorders. J Neuroimmunol 328. https://doi.org/10.1016/j.jneuroim.2019.01.004
Ruan W, Engevik MA, Spinler JK, Versalovic J (2020) Healthy human gastrointestinal microbiome: composition and function after a Decade of Exploration. Dig Dis Sci 65. https://doi.org/10.1007/s10620-020-06118-4
Rumah KR, Linden J, Fischetti VA, Vartanian T (2013) Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the Disease. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0076359
Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s Disease. Cell 167(6):1469–1480. https://doi.org/10.1016/j.cell.2016.11.018
Scheperjans F, Aho V, Pereira PAB et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30. https://doi.org/10.1002/mds.26069
Schepici G, Silvestro S, Bramanti P, Mazzon E (2019) The gut microbiota in multiple sclerosis: an overview of clinical trials. Cell Transpl 28. https://doi.org/10.1177/0963689719873890
Shahi SK, Freedman SN, Mangalam AK (2017) Gut microbiome in multiple sclerosis: the players involved and the roles they play. Gut Microbes 8. https://doi.org/10.1080/19490976.2017.1349041
Sharma G, Biswas SS, Mishra J et al (2023) Gut microbiota dysbiosis and Huntington’s disease: exploring the gut-brain axis and novel microbiota-based interventions. Life Sci 328. https://doi.org/10.1016/j.lfs.2023.121882
Silva MVF, Loures CDMG, Alves LCV et al (2019) Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci 26. https://doi.org/10.1186/s12929-019-0524-y
Socała K, Doboszewska U, Szopa A et al (2021) The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 172. https://doi.org/10.1016/j.phrs.2021.105840
Stec A, Maciejewska M, Rudnicka L et al (2023) The gut microbial metabolite trimethylamine N-Oxide is linked to specific complications of systemic sclerosis. J Inflamm Res 16. https://doi.org/10.2147/JIR.S409489
Stoy N, Mackay GM, Forrest CM et al (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93. https://doi.org/10.1111/j.1471-4159.2005.03070.x
Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693. https://doi.org/10.1016/j.brainres.2018.03.015
Sun MF, Zhu YL, Zhou ZL et al (2018) Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2018.02.005
Surmeier DJ (2018) Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J 285. https://doi.org/10.1111/febs.14607
Swer NM, Venkidesh BS, Murali TS, Mumbrekar KD (2023) Gut microbiota-derived metabolites and their importance in neurological disorders. Mol Biol Rep 50. https://doi.org/10.1007/s11033-022-08038-0
Tan AH, Chong CW, Lim SY et al (2021) Gut microbial ecosystem in Parkinson Disease: new clinicobiological insights from multi-omics. Ann Neurol 89. https://doi.org/10.1002/ana.25982
Tran TTT, Corsini S, Kellingray L et al (2019) APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer’s disease pathophysiology. FASEB J 33. https://doi.org/10.1096/fj.201900071R
Tremlett H, Bauer KC, Appel-Cresswell S et al (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81. https://doi.org/10.1002/ana.24901
Trøseid M, Andersen GØ, Broch K, Hov JR (2020) The gut microbiome in coronary artery disease and heart failure: current knowledge and future directions. EBioMedicine 52:102649. https://doi.org/10.1016/j.ebiom.2020.102649
Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124. https://doi.org/10.1007/s00702-017-1686-y
van Best N, Hornef MW, Savelkoul PHM, Penders J (2015) On the origin of species: factors shaping the establishment of infant’s gut microbiota. Birth defects res Part C -. Embryo Today Rev 105. https://doi.org/10.1002/bdrc.21113
Velasquez MT, Ramezani A, Manal A, Raj DS (2016) Trimethylamine N-oxide: the good, the bad and the unknown. Toxins (Basel) 8. https://doi.org/10.3390/toxins8110326
Vogt NM, Kerby RL, Dill-McFarland KA et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7. https://doi.org/10.1038/s41598-017-13601-y
Vogt NM, Romano KA, Darst BF et al (2018) The gut microbiota-derived metabolite trimethylamine
Comments (0)