Ahmed T, Van der Jeugd A, Caillierez R, Buée L, Blum D, D’Hooge R, Balschun D (2020) Chronic sodium selenate treatment restores deficits in cognition and synaptic plasticity in a murine model of tauopathy. Front Mol Neurosci 13:570223. https://doi.org/10.3389/fnmol.2020.570223
Article CAS PubMed PubMed Central Google Scholar
Alcântara DB, Dionísio AP, Artur AG, Silveira BKS, Lopes AF, Guedes JAC, Luz LR, Nascimento RF, Lopes GS, Hermsdorff HHM, Zocolo GJ (2022) Selenium in Brazil nuts: an overview of agronomical aspects, recent trends in analytical chemistry, and health outcomes. Food Chem 372:131207. https://doi.org/10.1016/j.foodchem.2021.131207
Article CAS PubMed Google Scholar
Arvanitakis Z, Bennett DA (2019) What is dementia? JAMA 322:1728. https://doi.org/10.1001/jama.2019.11653
Article PubMed PubMed Central Google Scholar
Ashrafi MR, Shams S, Nouri M, Mohseni M, Shabanian R, Yekaninejad MS, Chegini N, Khodadad A, Safaralizadeh R (2007) A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia 48:1750–1755. https://doi.org/10.1111/j.1528-1167.2007.01143.x
Article CAS PubMed Google Scholar
Avery JC, Hoffmann PR (2018) Selenium, selenoproteins, and immunity. Nutrients 10:e1203. https://doi.org/10.3390/nu10091203
Bai YZ, Zhang SQ (2023) Do selenium-enriched foods provide cognitive benefit? Metab Brain Dis 38:1501–1502. https://doi.org/10.1007/s11011-023-01212-8
Article CAS PubMed Google Scholar
Bai YZ, Zhang SQ (2024a) Evidence-based proposal for lowering Chinese tolerable upper intake level for selenium. Nutr Res 123:53–54. https://doi.org/10.1016/j.nutres.2024.01.001
Article CAS PubMed Google Scholar
Bai YZ, Zhang SQ (2024b) Selenium and children’s cognition. Int J Vitam Nutr Res 94:161–162. https://doi.org/10.1024/0300-9831/a000787
Bai YZ, Li JM, Zhang SQ (2024a) Potential novel mechanism of selenium on cognition. Metab Brain Dis 39:249–251. https://doi.org/10.1007/s11011-023-01289-1
Article CAS PubMed Google Scholar
Bai YZ, Gao YX, Zhang SQ (2024b) Identification of factors on blood selenium levels in the us adults: a cross-sectional study. Nutrients 16:e1734. https://doi.org/10.3390/nu16111734
Bayer KU, Schulman H (2019) Cam kinase: still inspiring at 40. Neuron 103:380–394. https://doi.org/10.1016/j.neuron.2019.05.033
Article CAS PubMed PubMed Central Google Scholar
Bellinger FP, He QP, Bellinger MT, Lin Y, Raman AV, White LR, Berry MJ (2008) Association of selenoprotein p with alzheimer’s pathology in human cortex. J Alzheimers Dis 15:465–472. https://doi.org/10.3233/jad-2008-15313
Article CAS PubMed PubMed Central Google Scholar
Bellinger FP, Bellinger MT, Seale LA, Takemoto AS, Raman AV, Miki T, Manning-Boğ AB, Berry MJ, White LR, Ross GW (2011) Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of parkinson’s brain. Mol Neurodegener 6:8. https://doi.org/10.1186/1750-1326-6-8
Article CAS PubMed PubMed Central Google Scholar
Bellinger FP, Raman AV, Rueli RH, Bellinger MT, Dewing AS, Seale LA, Andres MA, Uyehara-Lock JH, White LR, Ross GW, Berry MJ (2012) Changes in selenoprotein p in substantia nigra and putamen in Parkinson’s disease. J Parkinsons Dis 2:115–126. https://doi.org/10.3233/JPD-2012-11052
Article CAS PubMed PubMed Central Google Scholar
Bierla K, Dernovics M, Vacchina V, Szpunar J, Bertin G, Lobinski R (2008) Determination of selenocysteine and selenomethionine in edible animal tissues by 2d size-exclusion reversed-phase HPLC-ICP MS following carbamidomethylation and proteolytic extraction. Anal Bioanal Chem 390:1789–1798. https://doi.org/10.1007/s00216-008-1883-5
Article CAS PubMed Google Scholar
Borchert A, Wang CC, Ufer C, Schiebel H, Savaskan NE, Kuhn H (2006) The role of phospholipid hydroperoxide glutathione peroxidase isoforms in murine embryogenesis. J Biol Chem 281:19655–19664. https://doi.org/10.1074/jbc.M601195200
Article CAS PubMed Google Scholar
Bortolatto CF, Jesse CR, Wilhelm EA, Chagas PM, Nogueira CW (2013) Organoselenium bis selenide attenuates 3-nitropropionic acid-induced neurotoxicity in rats. Neurotox Res 23:214–224. https://doi.org/10.1007/s12640-012-9336-5
Article CAS PubMed Google Scholar
Burk RF, Hill KE, Olson GE, Weeber EJ, Motley AK, Winfrey VP, Austin LM (2007) Deletion of apolipoprotein e receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low-selenium diet is fed. J Neurosci 27:6207–6211. https://doi.org/10.1523/jneurosci.1153-07.2007
Article CAS PubMed PubMed Central Google Scholar
Cardoso BR, Hare DJ, Bush AI, Roberts BR (2017) Glutathione peroxidase 4: a new player in neurodegeneration? Mol Psychiatry 22:328–335. https://doi.org/10.1038/mp.2016.196
Article CAS PubMed Google Scholar
Cardoso BR, Roberts BR, Malpas CB, Vivash L, Genc S, Saling MM, Desmond P, Steward C, Hicks RJ, Callahan J, Brodtmann A, Collins S, Macfarlane S, Corcoran NM, Hovens CM, Velakoulis D, O’Brien TJ, Hare DJ, Bush AI (2019) Supranutritional sodium selenate supplementation delivers selenium to the central nervous system: results from a randomized controlled pilot trial in Alzheimer’s disease. Neurotherapeutics 16:192–202. https://doi.org/10.1007/s13311-018-0662-z
Article CAS PubMed Google Scholar
Castex MT, Arabo A, Benard M, Roy V, Le Joncour V, Prevost G, Bonnet JJ, Anouar Y, Falluel-Morel A (2016) Selenoprotein t deficiency leads to neurodevelopmental abnormalities and hyperactive behavior in mice. Mol Neurobiol 53:5818–5832. https://doi.org/10.1007/s12035-015-9505-7
Article CAS PubMed Google Scholar
Chen J, Berry MJ (2003) Selenium and selenoproteins in the brain and brain diseases. J Neurochem 86:1–12. https://doi.org/10.1046/j.1471-4159.2003.01854.x
Article CAS PubMed Google Scholar
Chen L, Na R, Gu M, Richardson A, Ran Q (2008) Lipid peroxidation up-regulates bace1 expression in vivo: a possible early event of amyloidogenesis in Alzheimer’s disease. J Neurochem 107:197–207. https://doi.org/10.1111/j.1471-4159.2008.05603.x
Article CAS PubMed PubMed Central Google Scholar
Chen H, Liu S, Li S, Chen J, Ni J, Liu Q (2018) Blocking the thiol at cysteine-322 destabilizes tau protein and prevents its oligomer formation. ACS Chem Neurosci 9:1560–1565. https://doi.org/10.1021/acschemneuro.8b00003
Article CAS PubMed Google Scholar
Chen M, Wu Q, Zhu Z, Huang A, Zhang J, Bekhit AEA, Wang J, Ding Y (2023) Selenium-enriched foods and their ingredients: As intervention for the vicious cycle between autophagy and overloaded stress responses in Alzheimer’s disease. Crit Rev Food Sci Nutr: 1–14. https://doi.org/10.1080/10408398.2023.2172547
Cosin-Roger J, Simmen S, Melhem H, Atrott K, Frey-Wagner I, Hausmann M, de Vallière C, Spalinger MR, Spielmann P, Wenger RH, Zeitz J, Vavricka SR, Rogler G, Ruiz PA (2017) Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat Commun 8:98. https://doi.org/10.1038/s41467-017-00213-3
Article CAS PubMed PubMed Central Google Scholar
Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, Zhou F, Wang M, Yu D, Liang D (2018) Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int 112:294–309. https://doi.org/10.1016/j.envint.2017.12.035
Comments (0)