The Role of Extracellular Vesicles in Pandemic Viral Infections

Abels, E. R., & Breakefield, X. O. (2016). Introduction to extracellular vesicles: Biogenesis, rna cargo selection, content, release, and uptake. Cellular and Molecular Neurobiology, 36, 301–312.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akers, J. C., Gonda, D., Kim, R., Carter, B. S., & Chen, C. C. (2013). Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. Journal of Neuro-Oncology, 113, 1–11.

Article  PubMed  PubMed Central  Google Scholar 

Aqil, M., Naqvi, A. R., Mallik, S., Bandyopadhyay, S., Maulik, U., & Jameel, S. (2014). The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. Journal of Extracellular Vesicles, 3, 23129.

Article  Google Scholar 

Arakelyan, A., Fitzgerald, W., Zicari, S., Vanpouille, C., & Margolis, L. (2017). Extracellular vesicles carry HIV Env and facilitate HIV infection of human lymphoid tissue. Scientific Reports, 7, 1695.

Article  PubMed  PubMed Central  Google Scholar 

Arenaccio, C., Chiozzini, C., Columba-Cabezas, S., Manfredi, F., Affabris, E., Baur, A., & Federico, M. (2014a). Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4+ T lymphocytes to replicate HIV-1 through a Nef-and ADAM17-dependent mechanism. Journal of Virology, 88, 11529–11539.

Article  PubMed  PubMed Central  Google Scholar 

Arenaccio, C., Chiozzini, C., Columba-Cabezas, S., Manfredi, F., & Federico, M. (2014b). Cell activation and HIV-1 replication in unstimulated CD4+ T lymphocytes ingesting exosomes from cells expressing defective HIV-1. Retrovirology, 11, 46.

Article  PubMed  PubMed Central  Google Scholar 

Barberis, E., Vanella, V. V., Falasca, M., Caneapero, V., Cappellano, G., Raineri, D., Ghirimoldi, M., De Giorgis, V., Puricelli, C., Vaschetto, R., et al. (2021). Circulating exosomes are strongly involved in SARS-CoV-2 infection. Frontiers in Molecular Biosciences, 8, 632290.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernard, M. A., Zhao, H., Yue, S. C., Anandaiah, A., Koziel, H., & Tachado, S. D. (2014). Novel HIV-1 miRNAs stimulate TNFα release in human macrophages via TLR8 signaling pathway. PLoS One, 9, e106006.

Article  PubMed  PubMed Central  Google Scholar 

Berry, F., Morin-Dewaele, M., Majidipur, A., Jamet, T., Bartier, S., Ignjatovic, E., Toniutti, D., Gaspar Lopes, J., Soyeux-Porte, P., Maillé, P., et al. (2022). Proviral role of human respiratory epithelial cell-derived small extracellular vesicles in SARS-CoV-2 infection. Journal of Extracellular Vesicles, 11, e12269.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bridgeman, A., Maelfait, J., Davenne, T., Partridge, T., Peng, Y., Mayer, A., Dong, T., Kaever, V., Borrow, P., & Rehwinkel, J. (2015). Viruses transfer the antiviral second messenger cGAMP between cells. Science, 349, 1228–1232.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campbell, T. D., Khan, M., Huang, M. B., Bond, V. C., & Powell, M. D. (2008). HIV-1 Nef protein is secreted into vesicles that can fuse with target cells and virions. Ethnicity & Disease, 18, S2–14–9.

Chahar, H. S., Bao, X., & Casola, A. (2015). Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses, 7, 3204–3225.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, L., Chen, R., Yao, M., Feng, Z., Yuan, G., Ye, F., Nguyen, K., Karn, J., McComsey, G. A., McIntyre, T. M., et al. (2022). COVID-19 plasma exosomes promote proinflammatory immune responses in peripheral blood mononuclear cells. Scientific Reports, 12, 21779.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chutipongtanate, S., Kongsomros, S., Pongsakul, N., Panachan, J., Khowawisetsut, L., Pattanapanyasat, K., Hongeng, S., & Thitithanyanont, A. (2022). Anti-SARS-CoV-2 effect of extracellular vesicles released from mesenchymal stem cells. Journal of Extracellular Vesicles, 11, e12201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Couch, Y., Buzàs, E. I., Di Vizio, D., Gho, Y. S., Harrison, P., Hill, A. F., Lötvall, J., Raposo, G., Stahl, P. D., Théry, C., et al. (2021). A brief history of nearly EV-erything–the rise and rise of extracellular vesicles. Journal of Extracellular Vesicles, 10, e12144.

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Silva-Januário, M. E., da Costa, C. S., Tavares, L. A., Oliveira, A. K., Januário, Y. C., de Carvalho, A. N., Cassiano, M. H., Rodrigues, R. L., Miller, M. E., Palameta, S., et al. (2023). HIV-1 Nef changes the proteome of T cells extracellular vesicles depleting IFITMs and other antiviral factors. Molecular & Cellular Proteomics, 22, 100676.

Article  Google Scholar 

de Carvalho, J. V., de Castro, R. O., da Silva, E. Z., Silveira, P. P., da Silva-Januário, M. E., Arruda, E., Jamur, M. C., Oliver, C., Aguiar, R. S., & daSilva, L. L. (2014). Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS One, 9, e113691.

Article  PubMed  PubMed Central  Google Scholar 

Deeks, S. G., Overbaugh, J., Phillips, A., & Buchbinder, S. (2015). HIV infection. Nature Reviews Disease Primers, 1, 15035.

Article  PubMed  Google Scholar 

Delgado, J. M., Duro, N., Rogers, D. M., Tkatchenko, A., Pandit, S. A., & Varma, S. (2021). Molecular basis for higher affinity of SARS-CoV-2 spike RBD for human ACE2 receptor. Proteins, 89, 1134–1144.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diamond, M. S., & Farzan, M. (2013). The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nature Reviews Immunology, 13, 46–57.

Article  CAS  PubMed  Google Scholar 

El-Shennawy, L., Hoffmann, A. D., Dashzeveg, N. K., McAndrews, K. M., Mehl, P. J., Cornish, D., Yu, Z., Tokars, V. L., Nicolaescu, V., Tomatsidou, A., et al. (2022). Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nature Communications, 13, 405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gentili, M., Kowal, J., Tkach, M., Satoh, T., Lahaye, X., Conrad, C., Boyron, M., Lombard, B., Durand, S., Kroemer, G., et al. (2015). Transmission of innate immune signaling by packaging of cgamp in viral particles. Science, 349, 1232–1236.

Article  CAS  PubMed  Google Scholar 

Granholm, A. C. (2023). Long-term effects of SARS-CoV-2 in the brain: Clinical consequences and molecular mechanisms. Journal of Clinical Medicine, 12, 3190.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, L., Xu, X. Q., Zhou, L., Zhou, R. H., Wang, X., Li, J. L., Liu, J. B., Liu, H., Zhang, B., & Ho, W. Z. (2018). Human intestinal epithelial cells release antiviral factors that inhibit HIV infection of macrophages. Frontiers in Immunology, 9, 247.

Article  PubMed  PubMed Central  Google Scholar 

Jiang, Y., Cai, X., Yao, J., Guo, H., Yin, L., Leung, W., & Xu, C. (2020). Role of extracellular vesicles in influenza virus infection. Frontiers in Cellular and Infection Microbiology, 10, 366.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnstone, R., Mathew, A., Mason, A. B., & Teng, K. (1991). Exosome formation during maturation of mammalian and avian reticulocytes: Evidence that exosome release is a major route for externalization of obsolete membrane proteins. Journal of Cellular Physiology, 147, 27–36.

Article  CAS  PubMed  Google Scholar 

Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367, eaau6977.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamat, A., Misra, V., Cassol, E., Ancuta, P., Yan, Z., Li, C., Morgello, S., & Gabuzda, D. (2012). A plasma biomarker signature of immune activation in HIV patients on antiretroviral therapy. PLoS One, 7, e30881.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khatua, A. K., Taylor, H. E., Hildreth, J. E. K., & Popik, W. (2009). Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. Journal of Virology, 83, 512–521.

Article  CAS 

Comments (0)

No login
gif