Abels, E. R., & Breakefield, X. O. (2016). Introduction to extracellular vesicles: Biogenesis, rna cargo selection, content, release, and uptake. Cellular and Molecular Neurobiology, 36, 301–312.
Article CAS PubMed PubMed Central Google Scholar
Akers, J. C., Gonda, D., Kim, R., Carter, B. S., & Chen, C. C. (2013). Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. Journal of Neuro-Oncology, 113, 1–11.
Article PubMed PubMed Central Google Scholar
Aqil, M., Naqvi, A. R., Mallik, S., Bandyopadhyay, S., Maulik, U., & Jameel, S. (2014). The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. Journal of Extracellular Vesicles, 3, 23129.
Arakelyan, A., Fitzgerald, W., Zicari, S., Vanpouille, C., & Margolis, L. (2017). Extracellular vesicles carry HIV Env and facilitate HIV infection of human lymphoid tissue. Scientific Reports, 7, 1695.
Article PubMed PubMed Central Google Scholar
Arenaccio, C., Chiozzini, C., Columba-Cabezas, S., Manfredi, F., Affabris, E., Baur, A., & Federico, M. (2014a). Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4+ T lymphocytes to replicate HIV-1 through a Nef-and ADAM17-dependent mechanism. Journal of Virology, 88, 11529–11539.
Article PubMed PubMed Central Google Scholar
Arenaccio, C., Chiozzini, C., Columba-Cabezas, S., Manfredi, F., & Federico, M. (2014b). Cell activation and HIV-1 replication in unstimulated CD4+ T lymphocytes ingesting exosomes from cells expressing defective HIV-1. Retrovirology, 11, 46.
Article PubMed PubMed Central Google Scholar
Barberis, E., Vanella, V. V., Falasca, M., Caneapero, V., Cappellano, G., Raineri, D., Ghirimoldi, M., De Giorgis, V., Puricelli, C., Vaschetto, R., et al. (2021). Circulating exosomes are strongly involved in SARS-CoV-2 infection. Frontiers in Molecular Biosciences, 8, 632290.
Article CAS PubMed PubMed Central Google Scholar
Bernard, M. A., Zhao, H., Yue, S. C., Anandaiah, A., Koziel, H., & Tachado, S. D. (2014). Novel HIV-1 miRNAs stimulate TNFα release in human macrophages via TLR8 signaling pathway. PLoS One, 9, e106006.
Article PubMed PubMed Central Google Scholar
Berry, F., Morin-Dewaele, M., Majidipur, A., Jamet, T., Bartier, S., Ignjatovic, E., Toniutti, D., Gaspar Lopes, J., Soyeux-Porte, P., Maillé, P., et al. (2022). Proviral role of human respiratory epithelial cell-derived small extracellular vesicles in SARS-CoV-2 infection. Journal of Extracellular Vesicles, 11, e12269.
Article CAS PubMed PubMed Central Google Scholar
Bridgeman, A., Maelfait, J., Davenne, T., Partridge, T., Peng, Y., Mayer, A., Dong, T., Kaever, V., Borrow, P., & Rehwinkel, J. (2015). Viruses transfer the antiviral second messenger cGAMP between cells. Science, 349, 1228–1232.
Article CAS PubMed PubMed Central Google Scholar
Campbell, T. D., Khan, M., Huang, M. B., Bond, V. C., & Powell, M. D. (2008). HIV-1 Nef protein is secreted into vesicles that can fuse with target cells and virions. Ethnicity & Disease, 18, S2–14–9.
Chahar, H. S., Bao, X., & Casola, A. (2015). Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses, 7, 3204–3225.
Article CAS PubMed PubMed Central Google Scholar
Chen, L., Chen, R., Yao, M., Feng, Z., Yuan, G., Ye, F., Nguyen, K., Karn, J., McComsey, G. A., McIntyre, T. M., et al. (2022). COVID-19 plasma exosomes promote proinflammatory immune responses in peripheral blood mononuclear cells. Scientific Reports, 12, 21779.
Article CAS PubMed PubMed Central Google Scholar
Chutipongtanate, S., Kongsomros, S., Pongsakul, N., Panachan, J., Khowawisetsut, L., Pattanapanyasat, K., Hongeng, S., & Thitithanyanont, A. (2022). Anti-SARS-CoV-2 effect of extracellular vesicles released from mesenchymal stem cells. Journal of Extracellular Vesicles, 11, e12201.
Article CAS PubMed PubMed Central Google Scholar
Couch, Y., Buzàs, E. I., Di Vizio, D., Gho, Y. S., Harrison, P., Hill, A. F., Lötvall, J., Raposo, G., Stahl, P. D., Théry, C., et al. (2021). A brief history of nearly EV-erything–the rise and rise of extracellular vesicles. Journal of Extracellular Vesicles, 10, e12144.
Article CAS PubMed PubMed Central Google Scholar
da Silva-Januário, M. E., da Costa, C. S., Tavares, L. A., Oliveira, A. K., Januário, Y. C., de Carvalho, A. N., Cassiano, M. H., Rodrigues, R. L., Miller, M. E., Palameta, S., et al. (2023). HIV-1 Nef changes the proteome of T cells extracellular vesicles depleting IFITMs and other antiviral factors. Molecular & Cellular Proteomics, 22, 100676.
de Carvalho, J. V., de Castro, R. O., da Silva, E. Z., Silveira, P. P., da Silva-Januário, M. E., Arruda, E., Jamur, M. C., Oliver, C., Aguiar, R. S., & daSilva, L. L. (2014). Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS One, 9, e113691.
Article PubMed PubMed Central Google Scholar
Deeks, S. G., Overbaugh, J., Phillips, A., & Buchbinder, S. (2015). HIV infection. Nature Reviews Disease Primers, 1, 15035.
Delgado, J. M., Duro, N., Rogers, D. M., Tkatchenko, A., Pandit, S. A., & Varma, S. (2021). Molecular basis for higher affinity of SARS-CoV-2 spike RBD for human ACE2 receptor. Proteins, 89, 1134–1144.
Article CAS PubMed PubMed Central Google Scholar
Diamond, M. S., & Farzan, M. (2013). The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nature Reviews Immunology, 13, 46–57.
Article CAS PubMed Google Scholar
El-Shennawy, L., Hoffmann, A. D., Dashzeveg, N. K., McAndrews, K. M., Mehl, P. J., Cornish, D., Yu, Z., Tokars, V. L., Nicolaescu, V., Tomatsidou, A., et al. (2022). Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nature Communications, 13, 405.
Article CAS PubMed PubMed Central Google Scholar
Gentili, M., Kowal, J., Tkach, M., Satoh, T., Lahaye, X., Conrad, C., Boyron, M., Lombard, B., Durand, S., Kroemer, G., et al. (2015). Transmission of innate immune signaling by packaging of cgamp in viral particles. Science, 349, 1232–1236.
Article CAS PubMed Google Scholar
Granholm, A. C. (2023). Long-term effects of SARS-CoV-2 in the brain: Clinical consequences and molecular mechanisms. Journal of Clinical Medicine, 12, 3190.
Article CAS PubMed PubMed Central Google Scholar
Guo, L., Xu, X. Q., Zhou, L., Zhou, R. H., Wang, X., Li, J. L., Liu, J. B., Liu, H., Zhang, B., & Ho, W. Z. (2018). Human intestinal epithelial cells release antiviral factors that inhibit HIV infection of macrophages. Frontiers in Immunology, 9, 247.
Article PubMed PubMed Central Google Scholar
Jiang, Y., Cai, X., Yao, J., Guo, H., Yin, L., Leung, W., & Xu, C. (2020). Role of extracellular vesicles in influenza virus infection. Frontiers in Cellular and Infection Microbiology, 10, 366.
Article CAS PubMed PubMed Central Google Scholar
Johnstone, R., Mathew, A., Mason, A. B., & Teng, K. (1991). Exosome formation during maturation of mammalian and avian reticulocytes: Evidence that exosome release is a major route for externalization of obsolete membrane proteins. Journal of Cellular Physiology, 147, 27–36.
Article CAS PubMed Google Scholar
Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367, eaau6977.
Article CAS PubMed PubMed Central Google Scholar
Kamat, A., Misra, V., Cassol, E., Ancuta, P., Yan, Z., Li, C., Morgello, S., & Gabuzda, D. (2012). A plasma biomarker signature of immune activation in HIV patients on antiretroviral therapy. PLoS One, 7, e30881.
Article CAS PubMed PubMed Central Google Scholar
Khatua, A. K., Taylor, H. E., Hildreth, J. E. K., & Popik, W. (2009). Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. Journal of Virology, 83, 512–521.
Comments (0)