Repeated Exposure of Vancomycin to Vancomycin-Susceptible Staphylococcus aureus (VSSA) Parent Emerged VISA and VRSA Strains with Enhanced Virulence Potentials

Aashique, M., Roy, A., Kosuru, R. Y., & Bera, S. (2021). Membrane depolarization sensitizes Pseudomonas aeruginosa against tannic acid. Current Microbiology, 78, 713–717.

Article  CAS  PubMed  Google Scholar 

Ahmad-Mansour, N., Loubet, P., Pouget, C., Dunyach-Remy, C., Sotto, A., Lavigne, J. P., & Molle, V. (2021). Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins, 13, 677.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: Beyond vancomycin resistance. Nature Reviews Microbiology, 10, 266–278.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayau, P., Bardossy, A. C., Sanchez, G., Ortiz, R., Moreno, D., Hartman, P., Rizvi, K., Prentiss, T. C., Perri, M. B., Mahan, M., et al. (2017). Risk factors for 30-Day mortality in patients with methicillin-resistant Staphylococcus aureus bloodstream infections. International Journal of Infectious Disease, 61, 3–6.

Article  Google Scholar 

Barua, N., Yang, Y., Huang, L., & Ip, M. (2021). VraSR regulatory system contributes to the virulence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in a 3D-skin model and skin infection of humanized mouse model. Biomedicines, 10, 35.

Article  PubMed  PubMed Central  Google Scholar 

Batool, N., Ko, K. S., Chaurasia, A. K., & Kim, K. K. (2020a). Functional identification of serine hydroxymethyltransferase as a key gene involved in lysostaphin resistance and virulence potential of Staphylococcus aureus strains. International Journal Molecular Sciences, 21, 9135.

Article  CAS  Google Scholar 

Batool, N., Shamim, A., Chaurasia, A. K., & Kim, K. K. (2020b). Genome-wide analysis of Staphylococcus aureus sequence type 72 isolates provides insights into resistance against antimicrobial agents and virulence potential. Frontiers in Microbiology, 11, 613800.

Article  PubMed  Google Scholar 

Beceiro, A., Tomás, M., & Bou, G. (2013). Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clinical Microbiology Review, 26, 185–230.

Article  CAS  Google Scholar 

Binda, E., Marinelli, F., & Marcone, G. L. (2014). Old and new glycopeptide antibiotics: Action and resistance. Antibiotics, 3, 572–594.

Article  PubMed  PubMed Central  Google Scholar 

Bischoff, M., Entenza, J. M., & Giachino, P. (2001). Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. Journal of Bacteriology, 183, 5171–5179.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bleul, L., Francois, P., & Wolz, C. (2022). Two-component systems of S. aureus: signaling and sensing mechanisms. Genes, 13, 34.

Blevins, J. S., Beenken, K. E., Elasri, M. O., Hurlburt, B. K., & Smeltzer, M. S. (2002). Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infection and Immunity, 70, 470–480.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boucher, H., Miller, L. G., & Razonable, R. R. (2010). Serious infections caused by methicillin-resistant Staphylococcus aureus. Clinical Infectious Disease, 51(Suppl 2), S183–S197.

Article  CAS  Google Scholar 

Camargo, I. L., Zanella, R. C., Gilmore, M. S., & Darini, A. L. (2008). Virulence factors in vancomycin-resistant and vancomycin-susceptible Enterococcus faecalis from Brazil. Brazilian Journal of Microbiology, 39, 273–278.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cepas, V., & Soto, S. M. (2020). Relationship between virulence and resistance among Gram-negative bacteria. Antibiotics, 9, 719.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, H. Y., Chen, C. C., Fang, C. S., Hsieh, Y. T., Lin, M. H., & Shu, J. C. (2011). Vancomycin activates σB in vancomycin-resistant Staphylococcus aureus resulting in the enhancement of cytotoxicity. PLoS ONE, 6, e24472.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, L., Wang, Z., Xu, T., Ge, H., Zhou, F., Zhu, X., Li, X., Qu, D., Zheng, C., Wu, Y., et al. (2021). The role of graRS in regulating virulence and antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Frontiers in Microbiology, 12, 727104.

Article  PubMed  PubMed Central  Google Scholar 

Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12, 547–569.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clinical and Laboratory Standards Institute (CLSI). (2021). Performance Standards for Antimicrobial Susceptibility Testing (31st ed.). USA: CLSI supplement M100. Clinicaland Laboratory Standards Institute.

Google Scholar 

Cosgrove, S. E., Carroll, K. C., & Perl, T. M. (2004). Staphylococcus aureus with reduced susceptibility to vancomycin. Clinical Infectious Disease, 39, 539–545.

Article  CAS  Google Scholar 

Cui, L., Murakami, H., Kuwahara-Arai, K., Hanaki, H., & Hiramatsu, K. (2000). Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrobial Agents Chemotherapy, 44, 2276–2285.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui, L., Ma, X., Sato, K., Okuma, K., Tenover, F. C., Mamizuka, E. M., Gemmell, C. G., Kim, M. N., Ploy, M. C., El-Solh, N., et al. (2003). Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Microbiology, 41, 5–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delauné, A., Dubrac, S., Blanchet, C., Poupel, O., Mäder, U., Hiron, A., Leduc, A., Fitting, C., Nicolas, P., Cavaillon, J. M., et al. (2012). The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. Infection and Immunity, 80, 3438–3453.

Article  PubMed  PubMed Central  Google Scholar 

Elso, C. M., Roberts, L. J., Smyth, G. K., Thomson, R. J., Baldwin, T. M., Foote, S. J., & Handman, E. (2004). Leishmaniasis host response loci (lmr13) modify disease severity through a Th1/Th2-independent pathway. Genes and Immunity, 5, 93–100.

Article  CAS  PubMed  Google Scholar 

Falord, M., Karimova, G., Hiron, A., & Msadek, T. (2012). GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 56, 1047–1058.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernández, L., & Hancock, R. E. (2012). Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clinical Microbiology Reviews, 25, 661–681.

Article  PubMed  PubMed Central  Google Scholar 

Finan, J. E., Archer, G. L., Pucci, M. J., & Climo, M. W. (2001). Role of penicillin-binding protein 4 in expression of vancomycin resistance among clinical isolates of oxacillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherepy, 45, 3070–3075.

Article  CAS  Google Scholar 

French, G. L. (1998). Enterococci and vancomycin resistance. Clinical Infectious Disease, 27(Suppl 1), S75–S83.

Article  CAS  Google Scholar 

Garcia-Migura, L., Liebana, E., & Jensen, L. B. (2007). Transposon characterization of vancomycin-resistant Enterococcus faecium (VREF) and dissemination of resistance associated with transferable plasmids. Journal of Antimicrobial Chemotherapy, 60, 263–268.

Article  CAS  PubMed  Google Scholar 

Gardete, S., & Tomasz, A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Investigation, 124, 2836–2840.

Article  PubMed  PubMed Central  Google Scholar 

Gottlieb, S. (2003). CDC reports first case of vancomycin resistant Staphylococcus aureus. British Medical Journal, 326, 783.

Article  PubMed Central 

Comments (0)

No login
gif