Aashique, M., Roy, A., Kosuru, R. Y., & Bera, S. (2021). Membrane depolarization sensitizes Pseudomonas aeruginosa against tannic acid. Current Microbiology, 78, 713–717.
Article CAS PubMed Google Scholar
Ahmad-Mansour, N., Loubet, P., Pouget, C., Dunyach-Remy, C., Sotto, A., Lavigne, J. P., & Molle, V. (2021). Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins, 13, 677.
Article CAS PubMed PubMed Central Google Scholar
Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: Beyond vancomycin resistance. Nature Reviews Microbiology, 10, 266–278.
Article CAS PubMed PubMed Central Google Scholar
Ayau, P., Bardossy, A. C., Sanchez, G., Ortiz, R., Moreno, D., Hartman, P., Rizvi, K., Prentiss, T. C., Perri, M. B., Mahan, M., et al. (2017). Risk factors for 30-Day mortality in patients with methicillin-resistant Staphylococcus aureus bloodstream infections. International Journal of Infectious Disease, 61, 3–6.
Barua, N., Yang, Y., Huang, L., & Ip, M. (2021). VraSR regulatory system contributes to the virulence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in a 3D-skin model and skin infection of humanized mouse model. Biomedicines, 10, 35.
Article PubMed PubMed Central Google Scholar
Batool, N., Ko, K. S., Chaurasia, A. K., & Kim, K. K. (2020a). Functional identification of serine hydroxymethyltransferase as a key gene involved in lysostaphin resistance and virulence potential of Staphylococcus aureus strains. International Journal Molecular Sciences, 21, 9135.
Batool, N., Shamim, A., Chaurasia, A. K., & Kim, K. K. (2020b). Genome-wide analysis of Staphylococcus aureus sequence type 72 isolates provides insights into resistance against antimicrobial agents and virulence potential. Frontiers in Microbiology, 11, 613800.
Beceiro, A., Tomás, M., & Bou, G. (2013). Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clinical Microbiology Review, 26, 185–230.
Binda, E., Marinelli, F., & Marcone, G. L. (2014). Old and new glycopeptide antibiotics: Action and resistance. Antibiotics, 3, 572–594.
Article PubMed PubMed Central Google Scholar
Bischoff, M., Entenza, J. M., & Giachino, P. (2001). Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. Journal of Bacteriology, 183, 5171–5179.
Article CAS PubMed PubMed Central Google Scholar
Bleul, L., Francois, P., & Wolz, C. (2022). Two-component systems of S. aureus: signaling and sensing mechanisms. Genes, 13, 34.
Blevins, J. S., Beenken, K. E., Elasri, M. O., Hurlburt, B. K., & Smeltzer, M. S. (2002). Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infection and Immunity, 70, 470–480.
Article CAS PubMed PubMed Central Google Scholar
Boucher, H., Miller, L. G., & Razonable, R. R. (2010). Serious infections caused by methicillin-resistant Staphylococcus aureus. Clinical Infectious Disease, 51(Suppl 2), S183–S197.
Camargo, I. L., Zanella, R. C., Gilmore, M. S., & Darini, A. L. (2008). Virulence factors in vancomycin-resistant and vancomycin-susceptible Enterococcus faecalis from Brazil. Brazilian Journal of Microbiology, 39, 273–278.
Article CAS PubMed PubMed Central Google Scholar
Cepas, V., & Soto, S. M. (2020). Relationship between virulence and resistance among Gram-negative bacteria. Antibiotics, 9, 719.
Article CAS PubMed PubMed Central Google Scholar
Chen, H. Y., Chen, C. C., Fang, C. S., Hsieh, Y. T., Lin, M. H., & Shu, J. C. (2011). Vancomycin activates σB in vancomycin-resistant Staphylococcus aureus resulting in the enhancement of cytotoxicity. PLoS ONE, 6, e24472.
Article CAS PubMed PubMed Central Google Scholar
Chen, L., Wang, Z., Xu, T., Ge, H., Zhou, F., Zhu, X., Li, X., Qu, D., Zheng, C., Wu, Y., et al. (2021). The role of graRS in regulating virulence and antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Frontiers in Microbiology, 12, 727104.
Article PubMed PubMed Central Google Scholar
Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12, 547–569.
Article CAS PubMed PubMed Central Google Scholar
Clinical and Laboratory Standards Institute (CLSI). (2021). Performance Standards for Antimicrobial Susceptibility Testing (31st ed.). USA: CLSI supplement M100. Clinicaland Laboratory Standards Institute.
Cosgrove, S. E., Carroll, K. C., & Perl, T. M. (2004). Staphylococcus aureus with reduced susceptibility to vancomycin. Clinical Infectious Disease, 39, 539–545.
Cui, L., Murakami, H., Kuwahara-Arai, K., Hanaki, H., & Hiramatsu, K. (2000). Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrobial Agents Chemotherapy, 44, 2276–2285.
Article CAS PubMed PubMed Central Google Scholar
Cui, L., Ma, X., Sato, K., Okuma, K., Tenover, F. C., Mamizuka, E. M., Gemmell, C. G., Kim, M. N., Ploy, M. C., El-Solh, N., et al. (2003). Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Microbiology, 41, 5–14.
Article CAS PubMed PubMed Central Google Scholar
Delauné, A., Dubrac, S., Blanchet, C., Poupel, O., Mäder, U., Hiron, A., Leduc, A., Fitting, C., Nicolas, P., Cavaillon, J. M., et al. (2012). The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. Infection and Immunity, 80, 3438–3453.
Article PubMed PubMed Central Google Scholar
Elso, C. M., Roberts, L. J., Smyth, G. K., Thomson, R. J., Baldwin, T. M., Foote, S. J., & Handman, E. (2004). Leishmaniasis host response loci (lmr13) modify disease severity through a Th1/Th2-independent pathway. Genes and Immunity, 5, 93–100.
Article CAS PubMed Google Scholar
Falord, M., Karimova, G., Hiron, A., & Msadek, T. (2012). GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 56, 1047–1058.
Article CAS PubMed PubMed Central Google Scholar
Fernández, L., & Hancock, R. E. (2012). Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clinical Microbiology Reviews, 25, 661–681.
Article PubMed PubMed Central Google Scholar
Finan, J. E., Archer, G. L., Pucci, M. J., & Climo, M. W. (2001). Role of penicillin-binding protein 4 in expression of vancomycin resistance among clinical isolates of oxacillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherepy, 45, 3070–3075.
French, G. L. (1998). Enterococci and vancomycin resistance. Clinical Infectious Disease, 27(Suppl 1), S75–S83.
Garcia-Migura, L., Liebana, E., & Jensen, L. B. (2007). Transposon characterization of vancomycin-resistant Enterococcus faecium (VREF) and dissemination of resistance associated with transferable plasmids. Journal of Antimicrobial Chemotherapy, 60, 263–268.
Article CAS PubMed Google Scholar
Gardete, S., & Tomasz, A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Investigation, 124, 2836–2840.
Article PubMed PubMed Central Google Scholar
Gottlieb, S. (2003). CDC reports first case of vancomycin resistant Staphylococcus aureus. British Medical Journal, 326, 783.
Comments (0)