Investigation of Bottleneck Enzyme Through Flux Balance Analysis to Improve Glycolic Acid Production in

Baldomà, L., & Aguilar, J. (1987). Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli k12. Journal of Biological Chemistry, 262, 13991–13996.

Article  PubMed  Google Scholar 

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

Article  CAS  PubMed  Google Scholar 

Cabulong, R. B., Lee, W.-K., Bañares, A. B., Ramos, K. R. M., Nisola, G. M., Valdehuesa, K. N. G., & Chung, W.-J. (2018). Engineering Escherichia coli for glycolic acid production from d-xylose through the dahms pathway and glyoxylate bypass. Applied Microbiology and Biotechnology, 102, 2179–2189.

Article  CAS  PubMed  Google Scholar 

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., Haraldsdóttir, H. S., Wachowiak, J., Keating, S. M., Vlasov, V., Magnusdóttir, S., Ng, C. Y., Preciat, G., Žagare, A., Chan, S. H. J., Aurich, M. K., Clancy, C. M., Modamio, J., Sauls, J. T., … Fleming, R. M. T. (2019). Creation and analysis of biochemical constraint-based models using the cobra toolbox vol 3.0. Nature Protocols, 14, 639–702.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imber, M., Loi, V. V., Reznikov, S., Fritsch, V. N., Pietrzyk-Brzezinska, A. J., Prehn, J., Hamilton, C., Wahl, M. C., Bronowska, A. K., & Antelmann, H. (2018). The aldehyde dehydrogenase alda contributes to the hypochlorite defense and is redox-controlled by protein s-bacillithiolation in Staphylococcus aureus. Redox Biology, 15, 557–568.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jayakody, L. N., Ferdouse, J., Hayashi, N., & Kitagaki, H. (2017). Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor. Critical Reviews in Biotechnology, 37, 177–189.

Article  CAS  PubMed  Google Scholar 

Jem, K. J., & Tan, B. (2020). The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research, 3, 60–70.

Article  Google Scholar 

Jo, J.-E., Mohan Raj, S., Rathnasingh, C., Selvakumar, E., Jung, W.-C., & Park, S. (2008). Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli k-12 that utilizes 3-hydroxypropionaldehyde as a substrate. Applied Microbiology and Biotechnology, 81, 51–60.

Article  CAS  PubMed  Google Scholar 

Koivistoinen, O. M., Kuivanen, J., Barth, D., Turkia, H., Pitkänen, J.-P., Penttilä, M., & Richard, P. (2013). Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microbial Cell Factories, 12, 82.

Article  PubMed  PubMed Central  Google Scholar 

Li, X., Chen, Y., & Nielsen, J. (2019). Harnessing xylose pathways for biofuels production. Current Opinion in Biotechnology, 57, 56–65.

Article  CAS  PubMed  Google Scholar 

Limón, A., Enjuanes, A., & Aguilar, J. (1999). Inactive and temperature-sensitive folding mutants of aldehyde dehydrogenase of Escherichia coli. International Microbiology, 2, 33–38.

PubMed  Google Scholar 

Liu, M., Ding, Y., Xian, M., & Zhao, G. (2018). Metabolic engineering of a xylose pathway for biotechnological production of glycolate in Escherichia coli. Microbial Cell Factories, 17, 51.

Article  PubMed  PubMed Central  Google Scholar 

Lu, X., Yao, Y., Yang, Y., Zhang, Z., Gu, J., Mojovic, L., Knezevic-Jugovic, Z., Baganz, F., Lye, G., & Shi, J. (2021). Ethylene glycol and glycolic acid production by wild-type Escherichia coli. Biotechnology and Applied Biochemistry, 68, 744–755.

Article  CAS  PubMed  Google Scholar 

Markets and Markets (2022). Global glycolic acid market. Industry Size Growth Forecast Report

Okado-Matsumoto, A., & Fridovich, I. (2000). The role of α, β-dicarbonyl compounds in the toxicity of short chain sugars. Journal of Biological Chemistry, 275, 34853–34857.

Article  CAS  PubMed  Google Scholar 

Orth, J. D., Fleming, R. M. T., & Palsson, B. Ø. (2010). Reconstruction and use of microbial metabolic networks: The core Escherichia coli metabolic model as an educational guide. EcoSal plus. https://doi.org/10.1128/ecosalplus.1110.1122.1121

Article  PubMed  Google Scholar 

Pereira, B., Li, Z. J., De Mey, M., Lim, C. G., Zhang, H., Hoeltgen, C., & Stephanopoulos, G. (2016). Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metabolic Engineering, 34, 80–87.

Article  CAS  PubMed  Google Scholar 

Rodríguez-Zavala, J. S., Allali-Hassani, A., & Weiner, H. (2006). Characterization of E. coli tetrameric aldehyde dehydrogenases with atypical properties compared to other aldehyde dehydrogenases. Protein Science, 15, 1387–1396.

Article  PubMed  PubMed Central  Google Scholar 

Salusjärvi, L., Havukainen, S., Koivistoinen, O., & Toivari, M. (2019). Biotechnological production of glycolic acid and ethylene glycol: Current state and perspectives. Applied Microbiology and Biotechnology, 103, 2525–2535.

Article  PubMed  PubMed Central  Google Scholar 

Salusjärvi, L., Toivari, M., Vehkomäki, M. L., Koivistoinen, O., Mojzita, D., Niemelä, K., Penttilä, M., & Ruohonen, L. (2017). Production of ethylene glycol or glycolic acid from d-xylose in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 101, 8151–8163.

Article  PubMed  Google Scholar 

Sato, K., Tatsunami, R., Yama, K., & Tampo, Y. (2013). Glycolaldehyde induces cytotoxicity and increases glutathione and multidrug-resistance-associated protein levels in schwann cells. Biological and Pharmaceutical Bulletin, 36, 1111–1117.

Article  CAS  PubMed  Google Scholar 

Wu, X., Xu, L., & Yan, M. (2016). A new NAD+-dependent glyceraldehyde dehydrogenase obtained by rational design of l-lactaldehyde dehydrogenase from Escherichia coli. Bioscience, Biotechnology, and Biochemistry, 80, 2306–2310.

Article  CAS  PubMed  Google Scholar 

Yi, Y.-C., & Ng, I. S. (2023). Toward low-carbon-footprint glycolic acid production for bioplastics through metabolic engineering in Escherichia coli. ACS Sustainable Chemistry & Engineering, 11, 815–823.

Article  CAS  Google Scholar 

Zhan, Y., Hou, W., Li, G., Shen, Y., Zhang, Y., & Tang, Y. (2019). Oxidant-free transformation of ethylene glycol toward glycolic acid in water. ACS Sustainable Chemistry & Engineering, 7, 17559–17564.

Article  CAS  Google Scholar 

Zhang, Z., Yang, Y., Wang, Y., Gu, J., Lu, X., Liao, X., Shi, J., Kim, C. H., Lye, G., Baganz, F., & Hao, J. (2020). Ethylene glycol and glycolic acid production from xylonic acid by Enterobacter cloacae. Microbial Cell Factories, 19, 89.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif