Abate-Daga, D., Rosenberg, S. A., & Morgan, R. A. (2014). Pancreatic cancer: Hurdles in the engineering of CAR-based immunotherapies. Oncoimmunology, 3, e29194.
Article PubMed PubMed Central Google Scholar
Alzubi, J., Dettmer-Monaco, V., Kuehle, J., Thorausch, N., Seidl, M., Taromi, S., Schamel, W., Zeiser, R., Abken, H., Cathomen, T., et al. (2020). PSMA-directed CAR T cells combined with low-dose docetaxel treatment induce tumor regression in a prostate cancer xenograft model. Molecular Therapy Oncolytics, 18, 226–235.
Article CAS PubMed PubMed Central Google Scholar
Bates, P. D., Rakhmilevich, A. L., Cho, M. M., Bouchlaka, M. N., Rao, S. L., Hales, J. M., Orentas, R. J., Fry, T. J., Gilles, S. D., Sondel, P. M., et al. (2021). combining immunocytokine and ex vivo activated NK cells as a platform for enhancing graft-versus-tumor effects against GD2+ murine neuroblastoma. Frontiers in Immunology, 12, 668307.
Article CAS PubMed PubMed Central Google Scholar
Beckett, A. N., Chockley, P., Pruett-Miller, S. M., Nguyen, P., Vogel, P., Sheppard, H., Krenciute, G., Gottschalk, S., & DeRenzo, C. (2023). CD47 expression is critical for CAR T-cell survival in vivo. Journal for Immunotherapy of Cancer, 11, e005857.
Article PubMed PubMed Central Google Scholar
Bielamowicz, K., Fousek, K., Byrd, T. T., Samaha, H., Mukherjee, M., Aware, N., Wu, M. F., Orange, J. S., Sumazin, P., Man, T. K., et al. (2018). Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology, 20, 506–518.
Article CAS PubMed Google Scholar
Candas-Green, D., Xie, B., Huang, J., Fan, M., Wang, A., Menaa, C., Zhang, Y., Zhang, L., Jing, D., Azghadi, S., et al. (2020). Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells. Nature Communications, 11, 4591.
Article CAS PubMed PubMed Central Google Scholar
Chen, K. H., Wada, M., Pinz, K. G., Liu, H., Shuai, X., Chen, X., Yan, L. E., Petrov, J. C., Salman, H., Senzel, L., Leung, E. L. H., et al. (2018). A compound chimeric antigen receptor strategy for targeting multiple myeloma. Leukemia, 32, 402–412.
Article CAS PubMed Google Scholar
Chen, C., Gu, Y. M., Zhang, F., Zhang, Z. C., Zhang, Y. T., He, Y. D., Wang, L., Zhou, N., Tang, F. T., Liu, H. J., et al. (2021). Construction of PD1/CD28 chimeric-switch receptor enhances anti-tumor ability of c-Met CAR-T in gastric cancer. Oncoimmunology, 10, 1901434.
Article PubMed PubMed Central Google Scholar
Daneshmanesh, A. H., Mikaelsson, E., Jeddi-Tehrani, M., Bayat, A. A., Ghods, R., Ostadkarampour, M., Akhondi, M., Lagercrantz, S., Larsson, C., Osterborg, A., et al. (2008). Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. International Journal of Cancer, 123, 1190–1195.
Article CAS PubMed Google Scholar
Dréau, D., Moore, L. J., Wu, M., Roy, L. D., Dillion, L., Porter, T., Puri, R., Momin, N., Wittrup, K. D., & Mukherjee, P. (2019). Combining the specific anti-MUC1 antibody TAB004 and Lip-MSA-IL-2 limits pancreatic cancer progression in immune competent murine models of pancreatic ductal adenocarcinoma. Frontiers in Oncology, 9, 330.
Article PubMed PubMed Central Google Scholar
Fousek, K., Watanabe, J., Joseph, S. K., George, A., An, X., Byrd, T. T., Morris, J. S., Luong, A., Martínez-Paniagua, M. A., Sanber, K., et al. (2021). CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia, 35, 75–89.
Article CAS PubMed Google Scholar
Friedman, K. M., Garrett, T. E., Evans, J. W., Horton, H. M., Latimer, H. J., Seidel, S. L., Horvath, C. J., & Morgan, R. A. (2018). Effective targeting of multiple B-cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. Human Gene Therapy, 29, 585–601.
Article CAS PubMed PubMed Central Google Scholar
Fry, T. J., Shah, N. N., Orentas, R. J., Stetler-Stevenson, M., Yuan, C. M., Ramakrishna, S., Wolters, P., Martin, S., Delbrook, C., Yates, B., et al. (2018). CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Medicine, 24, 20–28.
Article CAS PubMed Google Scholar
Ghartey-Kwansah, G., Li, Z., Feng, R., Wang, L., Zhou, X., Chen, F. Z., Xu, M. M., Jones, O., Mu, Y., Chen, S., et al. (2018). Comparative analysis of FKBP family protein: Evaluation, structure, and function in mammals and Drosophila melanogaster. BMC Developmental Biology, 18, 7.
Article PubMed PubMed Central Google Scholar
Gill, S., & June, C. H. (2015). Going viral: Chimeric antigen receptor T-cell therapy for hematological malignancies. Immunological Reviews, 263, 68–89.
Article CAS PubMed Google Scholar
Golubovskaya, V., Berahovich, R., Zhou, H., Xu, S., Harto, H., Li, L., Chao, C. C., Mao, M. M., & Wu, L. (2017). CD47-CAR-T cells effectively kill target cancer cells and block pancreatic tumor growth. Cancers, 9, 139.
Article PubMed PubMed Central Google Scholar
Guo, F., & Cui, J. (2020). CAR-T in solid tumors: Blazing a new trail through the brambles. Life Sciences, 260, 118300.
Article CAS PubMed Google Scholar
Hashem Boroojerdi, M., Rahbarizadeh, F., Safarzadeh Kozani, P., Kamali, E., & Safarzadeh Kozani, P. (2020). Strategies for having a more effective and less toxic CAR T-cell therapy for acute lymphoblastic leukemia. Medical Oncology, 37, 100.
Article CAS PubMed Google Scholar
Jiang, H., Shi, Z., Wang, P., Wang, C., Yang, L., Du, G., Zhang, H., Shi, B., Jia, J., Li, Q., Wang, H., & Li, Z. (2019). Claudin18.2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. Journal of the National Cancer Institute, 111, 409–418.
Jiang, V. C., Liu, Y., Jordan, A., McIntosh, J., Li, Y., Che, Y., Jessen, K. A., Lannutti, B. J., & Wang, M. (2021a). The antibody drug conjugate VLS-101 targeting ROR1 is effective in CAR T-resistant mantle cell lymphoma. Journal of Hematology & Oncology, 14, 132.
Jiang, W., Li, T., Guo, J., Wang, J., Jia, L., Shi, X., Yang, T., Jiao, R., Wei, X., Feng, Z., et al. (2021b). Bispecific c-Met/PD-L1 CAR-T cells have enhanced therapeutic effects on hepatocellular carcinoma. Frontiers in Oncology, 11, 546586.
Article CAS PubMed PubMed Central Google Scholar
Jiang, Z., Sun, H., Yu, J., Tian, W., & Song, Y. (2021c). Targeting CD47 for cancer immunotherapy. Journal of Hematology & Oncology, 14, 180.
Jin, L., Ge, H., Long, Y., Yang, C., Chang, Y. E., Mu, L., Sayour, E. J., De Leon, G., Wang, Q. J., Yang, J. C., et al. (2018). CD70, a novel target of CAR T-cell therapy for gliomas. Neuro-Oncology, 20, 55–65.
Article CAS PubMed Google Scholar
Johnson, L. A., Scholler, J., Ohkuri, T., Kosaka, A., Patel, P. R., McGettigan, S. E., Nace, A. K., Dentchev, T., Thekkat, P., Loew, A., et al. (2015). Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Science Translational Medicine, 7, 275ra22.
Article CAS PubMed PubMed Central Google Scholar
June, C. H., & Sadelain, M. (2018). Chimeric antigen receptor therapy. The New England Journal of Medicine, 379, 64–73.
Article CAS PubMed PubMed Central Google Scholar
Jung, M., Yang, Y., McCloskey, J. E., Zaman, M., Vedvyas, Y., Zhang, X., Stefanova, D., Gray, K. D., Min, I. M., Zarnegar, R., et al. (2020). Chimeric antigen receptor T cell therapy targeting ICAM-1 in gastric cancer. Molecular Therapy Oncolytics, 18, 587–601.
Article CAS PubMed PubMed Central Google Scholar
Karimi, M. A., Lee, E., Bachmann, M. H., Salicioni, A. M., Behrens, E. M., Kambayashi, T., & Baldwin, C. L. (2014). Measuring cytotoxicity by bioluminescence imaging outperforms the standard chromium-51 release assay. PLoS ONE, 9, e89357.
Article PubMed PubMed Central Google Scholar
Kusakawa, S., Machida, K., Yasuda, S., Takada, N., Kuroda, T., Sawada, R., Okura, H., Tsutsumi, H., Kawamata, S., & Sato, Y. (2015). Characterization of in vivo tumorigenicity tests using severe immunodeficient NOD/Shi-scid IL2Rγnull mice for detection of tumorigenic cellular impurities in human cell-processed therapeutic products. Regenerative Therapy, 1, 30–37.
Comments (0)