Agnew, D. E., & Pfleger, B. F. (2013). Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chemical Engineering Science, 103, 58–67.
Article CAS PubMed Google Scholar
Ahmad, W., Koley, P., Dwivedi, S., Lakshman, R., Shin, Y. K., van Duin, A. C. T., Shrotri, A., & Tanksale, A. (2023). Aqueous phase conversion of CO2 into acetic acid over thermally transformed MIL-88B catalyst. Nature Communications, 14, 2821.
Article CAS PubMed PubMed Central Google Scholar
Al-Tamreh, S. A., Ibrahim, M. H., El-Naas, M. H., Vaes, J., Pant, D., Benamor, A., & Amhamed, A. (2021). Electroreduction of carbon dioxide into formate: A comprehensive review. ChemElectroChem, 8, 3207–3220.
Beckers, V., Poblete-Castro, I., Tomasch, J., & Wittmann, C. (2016). Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microbial Cell Factories, 15, 73.
Article PubMed PubMed Central Google Scholar
Borrero-de Acuña, J. M., Bielecka, A., Häussler, S., Schobert, M., Jahn, M., Wittmann, C., Jahn, M., & Poblete-Castro, I. (2014). Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microbial Cell Factories, 13, 88.
Article PubMed PubMed Central Google Scholar
Borrero-de Acuña, J. M., Rohde, M., Saldias, C., & Poblete-Castro, I. (2021). Fed-Batch mcl-polyhydroxyalkanoates production in Pseudomonas putida KT2440 and ΔphaZ mutant on biodiesel-derived crude glycerol. Frontiers in Bioengineering and Biotechnology, 9, 642023.
Article PubMed PubMed Central Google Scholar
Calzadiaz-Ramirez, L., & Meyer, A. S. (2022). Formate dehydrogenases for CO2 utilization. Current Opinion in Biotechnology, 73, 95–100.
Article CAS PubMed Google Scholar
Chang, W., Yoon, J., & Oh, M. K. (2022). Production of polyhydroxyalkanoates with the fermentation of Methylorubrum extorquens using formate as a carbon substrate. Biotechnology and Bioprocess Engineering, 27, 268–275.
Chen, J., Li, W., Zhang, Z. Z., Tang, T. W., & Li, Z. J. (2018). Metabolic engineering of Escherichia coli for the synthesis of polyhydroxyalkanoates using acetate as a main carbon source. Microbial Cell Factories, 17, 102.
Article PubMed PubMed Central Google Scholar
Choi, S. Y., Cho, I. J., Lee, Y., Kim, Y. J., Kim, K. J., & Lee, S. Y. (2020). Microbial polyhydroxyalkanoates and nonnatural polyesters. Advanced Materials, 32, 1907138.
Chong, H. Q., Yeow, J., Wang, I., Song, H., & Jiang, R. R. (2013). Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS ONE, 8, e77422.
Article CAS PubMed PubMed Central Google Scholar
Da Silva, D. A., Antonio, R. V., Rossi, J. M., & Pena, R. D. (2014). Production of medium-chain-length polyhydroxyalkanoate by Pseudomonas oleovorans grown in sugary cassava extract supplemented with andiroba oil. Food Science and Technology, 34, 738–745.
Fang, L. X., Fan, J., Luo, S. L., Chen, Y. R., Wang, C. Y., Cao, Y. X., & Song, H. (2021). Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nature Communications, 12, 4976.
Article CAS PubMed PubMed Central Google Scholar
Favaro, L., Basaglia, M., & Casella, S. (2019). Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: A review. Biofuels Bioproducts & Biorefining, 13, 208–227.
Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.
Gumel, A. M., Annuar, M. S. M., & Chisti, Y. (2013). Recent advances in the production, recovery and applications of polyhydroxyalkanoates. Journal of Polymers and the Environment, 21, 580–605.
Hwang, H. W., Yoon, J., Min, K., Kim, M. S., Kim, S. J., Cho, D. H., Susila, H., Na, J. G., Oh, M. K., & Kim, Y. H. (2020). Two-stage bioconversion of carbon monoxide to biopolymers via formate as an intermediate. Chemical Engineering Journal, 389, 124394.
Kawanami, H., Himeda, Y., & Laurenczy, G. (2017). Formic acid as a hydrogen carrier for fuel cells toward a sustainable energy system. Advances in Inorganic Chemistry, 70, 395–427.
Kiefer, D., Merkel, M., Lilge, L., Henkel, M., & Hausmann, R. (2021). From acetate to bio-based products: Underexploited potential for industrial biotechnology. Trends in Biotechnology, 39, 397–411.
Article CAS PubMed Google Scholar
Kim, S. J., Yoon, J., Im, D. K., Kim, Y. H., & Oh, M. K. (2019). Adaptively evolved Escherichia coli for improved ability of formate utilization as a carbon source in sugar-free conditions. Biotechnology for Biofuels, 12, 207.
Article PubMed PubMed Central Google Scholar
Kushartomo, W., & Prabowo, A. (2019). The application of sodium acetate as concrete permeability-reducing admixtures. IOP Conference Series: Materials Science and Engineering, 508, 012009.
Lee, H. M., Jeon, B. Y., & Oh, M. K. (2016). Microbial production of ethanol from acetate by engineered Ralstonia eutropha. Biotechnology and Bioprocess Engineering, 21, 402–407.
Lemos, P. C., Serafim, L. S., & Reis, M. A. M. (2004). Polyhydroxyalkanoates production by activated sludge in a SBR using acetate and propionate as carbon sources. Water Science and Technology, 50, 189–194.
Article CAS PubMed Google Scholar
Ling, C., Peabody, G. L., Salvachúa, D., Kim, Y. M., Kneucker, C. M., Calvey, C. H., Monninger, M. A., Munoz, N. M., Poirier, B. C., Ramirez, K. J., et al. (2022). Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nature Communications, 13, 4925.
Article CAS PubMed PubMed Central Google Scholar
Liu, H., Chen, Y., Zhang, Y., Zhao, W., Guo, H., Wang, S., Xia, W., Wang, S., Liu, R., & Yang, C. (2022). Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering. International Journal of Biological Macromolecules, 209, 117–124.
Article CAS PubMed Google Scholar
Liu, Y. M., Chen, S., Quan, X., & Yu, H. T. (2015). Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. Journal of the American Chemical Society, 137, 11631–11636.
Article CAS PubMed Google Scholar
Mezzina, M. P., Manoli, M. T., Prieto, M. A., & Nikel, P. I. (2021). Engineering native and synthetic pathways in Pseudomonas putida for the production of tailored polyhydroxyalkanoates. Biotechnology Journal, 16, e2000165.
Nguyen, L. T., Mai, D. H. A., Sarwar, A., & Lee, E. Y. (2022). Reconstructing ethanol oxidation pathway in Pseudomonas putida KT2440 for bio-upgrading of ethanol to biodegradable polyhydroxybutanoates. International Journal of Biological Macromolecules, 222, 902–914.
Article CAS PubMed Google Scholar
Nwanebu, E., Omanovic, S., Hrapovic, S., Vidales, A. G., & Tartakovsky, B. (2022). Carbon dioxide conversion to acetate and methane in a microbial electrosynthesis cell employing an electrically-conductive polymer cathode modified by nickel-based coatings. International Journal of Hydrogen Energy, 47, 203–215.
Peter, S. C. (2018). Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis. ACS Energy Letters, 3, 1557–1561.
Poblete-Castro, I., Rodriguez, A. L., Lam, C. M. C., & Kessler, W. (2014). Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. Journal of Microbiology and Biotechnology, 24, 59–69.
Comments (0)