Catenacci DV. Next-generation clinical trials: novel strategies to address the challenge of tumor molecular heterogeneity. Mol Oncol. 2015;9(5):967–96. https://doi.org/10.1016/j.molonc.2014.09.011.
Article CAS PubMed Google Scholar
Giri PM, Banerjee A, Layek B. A recent review on cancer nanomedicine. Cancers (Basel). 2023;15:2256.
Article CAS PubMed Google Scholar
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12–49. https://doi.org/10.3322/caac.21820.
Noor F, Tahir Ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network pharmacology approach for medicinal plants: review and assessment. Pharmaceuticals (Basel). 2022;15:572.
Article CAS PubMed Google Scholar
Khamisipour G, Jadidi-Niaragh F, Jahromi AS, Zandi K, Hojjat-Farsangi M. Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol. 2016;37(8):10021–39. https://doi.org/10.1007/s13277-016-5059-1.
Article CAS PubMed Google Scholar
Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol. 2016;11:47–76. https://doi.org/10.1146/annurev-pathol-012615-044438.
Article CAS PubMed Google Scholar
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Balcheva-Sivenova ZP, Georgiev MI. Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell Mol Life Sci. 2021;78(19–20):6487–503. https://doi.org/10.1007/s00018-021-03918-3.
Article CAS PubMed PubMed Central Google Scholar
Abd El-Hack ME, et al. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. J Sci Food Agric. 2021;101(14):5747–62. https://doi.org/10.1002/jsfa.11372.
Article CAS PubMed Google Scholar
Butt MS, Ahmad RS, Sultan MT, Qayyum MM, Naz A. Green tea and anticancer perspectives: updates from last decade. Crit Rev Food Sci Nutr. 2015;55(6):792–805. https://doi.org/10.1080/10408398.2012.680205.
Article CAS PubMed Google Scholar
Chebath J, Benech P, Revel M, Vigneron M. Constitutive expression of (2ʹ-5ʹ) oligo A synthetase confers resistance to picornavirus infection. Nature. 1987;330(6148):587–8. https://doi.org/10.1038/330587a0.
Article CAS PubMed Google Scholar
Varghese R, Dalvi YB. Natural products as anticancer agents. Curr Drug Targets. 2021;22(11):1272–87. https://doi.org/10.2174/1389450121999201230204526.
Article CAS PubMed Google Scholar
Kumar A, D’silva M, Dholakia K, Levenson AS. In vitro anticancer properties of table grape powder extract (GPE) in prostate cancer. Nutrients. 2018;10:1804.
Article PubMed PubMed Central Google Scholar
Frenkel M, et al. Integrating dietary supplements into cancer care. Integr Cancer Ther. 2013;12(5):369–84. https://doi.org/10.1177/1534735412473642.
Article CAS PubMed Google Scholar
Shin JK, Lee SM. Genipin protects the liver from ischemia/reperfusion injury by modulating mitochondrial quality control. Toxicol Appl Pharmacol. 2017;328:25–33. https://doi.org/10.1016/j.taap.2017.05.002.
Article CAS PubMed Google Scholar
Wang Y, et al. Genipin ameliorates carbon tetrachloride-induced liver injury in mice via the concomitant inhibition of inflammation and induction of autophagy. Oxid Med Cell Longev. 2019;2019:3729051. https://doi.org/10.1155/2019/3729051.
Article CAS PubMed PubMed Central Google Scholar
Fan X, et al. Therapeutic potential of genipin in various acute liver injury, fulminant hepatitis, NAFLD and other non-cancer liver diseases: More friend than foe. Pharmacol Res. 2020;159: 104945. https://doi.org/10.1016/j.phrs.2020.104945.
Article CAS PubMed Google Scholar
Zhao L, Sun L, Li X, Lu T, Pan Y, Du P. Potential cardioprotective effect of genipin via cyclooxidase 2 suppression and p53 signal pathway attenuation in induced myocardial infarction in rats. Shock. 2022;58:457–63.
Article CAS PubMed Google Scholar
Jeon WK, Hong HY, Kim BC. Genipin up-regulates heme oxygenase-1 via PI3-kinase-JNK1/2-Nrf2 signaling pathway to enhance the anti-inflammatory capacity in RAW264.7 macrophages. Arch Biochem Biophys. 2011;512(2):119–25. https://doi.org/10.1016/j.abb.2011.05.016.
Article CAS PubMed Google Scholar
Li CC, Hsiang CY, Lo HY, Pai FT, Wu SL, Ho TY. Genipin inhibits lipopolysaccharide-induced acute systemic inflammation in mice as evidenced by nuclear factor-κB bioluminescent imaging-guided transcriptomic analysis. Food Chem Toxicol. 2012;50(9):2978–86. https://doi.org/10.1016/j.fct.2012.05.054.
Article CAS PubMed Google Scholar
Jiang F, Jiang R, Zhu X, Zhang X, Zhan Z. Genipin inhibits TNF-α-induced vascular smooth muscle cell proliferation and migration via induction of HO-1. PLoS ONE. 2013;8(8): e74826. https://doi.org/10.1371/journal.pone.0074826.
Article CAS PubMed PubMed Central Google Scholar
Zhao T, et al. Protective effects of genipin on ethanol-induced acute gastric injury in mice by inhibiting NLRP3 inflammasome activation. Eur J Pharmacol. 2020;867: 172800. https://doi.org/10.1016/j.ejphar.2019.172800.
Article CAS PubMed Google Scholar
Ko JW, et al. Genipin inhibits allergic responses in ovalbumin-induced asthmatic mice. Int Immunopharmacol. 2017;53:49–55. https://doi.org/10.1016/j.intimp.2017.10.010.
Article CAS PubMed Google Scholar
Kim JH, Kim K, Kim W. Genipin inhibits rotavirus-induced diarrhea by suppressing viral replication and regulating inflammatory responses. Sci Rep. 2020;10(1):15836. https://doi.org/10.1038/s41598-020-72968-7.
Article CAS PubMed PubMed Central Google Scholar
Wang J, et al. Genipin inhibits LPS-induced inflammatory response in BV2 microglial cells. Neurochem Res. 2017;42(10):2769–76. https://doi.org/10.1007/s11064-017-2289-6.
Article CAS PubMed Google Scholar
Ma CJ, et al. Genipin stimulates glucose transport in C2C12 myotubes via an IRS-1 and calcium-dependent mechanism. J Endocrinol. 2013;216(3):353–62. https://doi.org/10.1530/JOE-11-0473.
Article CAS PubMed Google Scholar
Shen XL, Liu H, Xiang H, Qin XM, Du GH, Tian JS. Combining biochemical with (1)H NMR-based metabolomics approach unravels the antidiabetic activity of genipin and its possible mechanism. J Pharm Biomed Anal. 2016;129:80–9. https://doi.org/10.1016/j.jpba.2016.06.041.
Article CAS PubMed Google Scholar
Zhou H, Zhao J, Zhang X. Inhibition of uncoupling protein 2 by genipin reduces insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Arch Biochem Biophys. 2009;486(1):88–93. https://doi.org/10.1016/j.abb.2009.02.017.
Article CAS PubMed Google Scholar
Wu Y, Wang Y, Liu D. Identification of genipin as a potential treatment for type 2 diabetes. Int J Mol Sci. 2023;24:2131.
Comments (0)