Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.
Article CAS PubMed Google Scholar
Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80.
Article CAS PubMed Google Scholar
Chevalier MF, Trabanelli S, Racle J, Salomé B, Cesson V, Gharbi D, Bohner P, Domingos-Pereira S, Dartiguenave F, Fritschi AS, Speiser DE, Rentsch CA, Gfeller D, Jichlinski P, Nardelli-Haefliger D, Jandus C, Derré L. ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence. J Clin Invest. 2017;127(8):2916–29.
Article PubMed PubMed Central Google Scholar
Messing EM. Why should we increase public awareness of bladder cancer, and how can we do it? Nat Clin Pract Urol. 2008;5(3):117.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
Babjuk M, Böhle A, Burger M, Capoun O, Cohen D, Compérat EM, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur Urol. 2017;71:447–61.
Kamat AM, Lerner SP, O’Donnell M, Georgieva MV, Yang M, Inman BA, et al. Evidence-based assessment of current and emerging bladder-sparing therapies for non-muscle-invasive bladder cancer after bacillus calmette-guerin therapy: a systematic review and meta-analysis. Eur Urol Oncol. 2020;3:318–40.
Lobo N, Martini A, Kamat AM. Evolution of immunotherapy in the treatment of non-muscle-invasive bladder cancer. Expert Rev Anticancer Ther. 2022;22:361–70.
Article CAS PubMed Google Scholar
Sharpe AH. Introduction to checkpoint inhibitors and cancer immunotherapy. Immunol Rev. 2017;276:5–8.
Article CAS PubMed PubMed Central Google Scholar
Yamauchi T, Hoki T, Oba T, Jain V, Chen H, Attwood K, et al. T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors. Nat Commun. 2021;12:1402.
Article CAS PubMed PubMed Central Google Scholar
Allard P, Bernard P, Fradet Y, Têtu B. The early clinical course of primary Ta and T1 bladder cancer: a proposed prognostic index. Br J Urol. 1998;81:692–8.
Article CAS PubMed Google Scholar
Krabbe LM, Svatek RS, Shariat SF, Messing E, Lotan Y. Bladder cancer risk: use of the PLCO and NLST to identify a suitable screening cohort. Urol Oncol Semin Orig Investig. 2015;33:65.e19-65.e25.
Pietzak EJ, Mucksavage P, Guzzo TJ, Malkowicz SB. Heavy cigarette smoking and aggressive bladder cancer at initial presentation. Urology. 2015;86:968–73.
Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18:153–67.
Article CAS PubMed Google Scholar
Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA. 2018;115:E4041–50.
Article CAS PubMed PubMed Central Google Scholar
Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K. Turn back the TIMe: targeting tumor infiltrating myeloid cells to revert cancer progression. Front Immunol. 1977;2018:9.
Fujimura T, Kambayashi Y, Fujisawa Y, Hidaka T, Aiba S. Tumor-associated macrophages: therapeutic targets for skin cancer. Front Oncol. 2018;8:3.
Article PubMed PubMed Central Google Scholar
DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19:369–82.
Article CAS PubMed PubMed Central Google Scholar
Wang YC, Wang X, Yu J, Ma F, Li Z, Zhou Y, et al. Targeting monoamine oxidase a-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat Commun. 2021;12:3530.
Article CAS PubMed PubMed Central Google Scholar
Singer TP, Ramsay RR. Monoamine oxidases: old friends hold many surprises. FASEB J. 1995;9:605–10.
Article CAS PubMed Google Scholar
Wouers J. Structural aspects of monoamine oxidase and its reversible inhibition. Curr Med Chem. 1998;5:137–62.
Shih JC, Chen K, Ridd M. Monoamine oxidase: from genes to behavior. Ann Rev Neurosci. 1999;22:197–217.
Article CAS PubMed Google Scholar
Rybaczyk L, Bashaw M, Pathak D, Huang K. An indicator of cancer: downregulation of monoamine oxidase-a in multiple organs and species. BMC Genom. 2008;9:134.
Alfadda A, Sallam R. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012;2012: 936486.
Article PubMed PubMed Central Google Scholar
Yang Y, Feng R, Wang YZ, Sun HW, Zou QM, Li HB. Toll-like receptors: triggers of regulated cell death and promising targets for cancer therapy. Immunol Lett. 2020;223:1–9.
Article CAS PubMed Google Scholar
Bourquin C, Pommier A, Hotz C. Harnessing the immune system to fight cancer with toll-like receptor and RIG-I-like receptor agonists. Pharmacol Res. 2020;154:104.
Alonso JCC, de Souza BR, Reis IB, de Arruda Camargo GC, Oliveira G, Salmazo MIBF, Gonçalves JM, Castro Roston JR, Caria PHF, Santos AS, Freitas LLL, Billis A, Durán N, Fávaro WJ. Oncotherad®(MRB-CFI-1) nanoimmunotherapy: a promising strategy to treat bacillus calmette-guerin-unresponsive non-muscle-invasive bladder cancer: crosstalk among T-cell CX3CR1, immune checkpoints, and the toll-like receptor 4 signaling pathway. Int J Mol Sci. 2023;24(24):17535.
Article CAS PubMed PubMed Central Google Scholar
Böckelmann PK, Tizziani SHS, Durán N, Fávaro WJ. New therapeutic perspective for bladder cancer in dogs: toxicological and clinical effects of oncotherad nanostructured immunotherapy. J Phys Conf Ser. 2019;1323: 012022.
Durán N, Dias QC, Fávaro WJ. Oncotherad: a new nanobiological response modifier, its toxicological and anticancer activities. J Phys Conf Ser. 2019;1323: 012018.
Fávaro WJ, Iantas SR, Gonçalves JM, Socca EAR, Durán N, Billis A, et al. Single-arm phase I/II study of the safety and efficacy of oncotherad immunomodulator in patients BCG-refractory or relapsed non-muscle invasive bladder cancer. J Clin Oncol. 2019;37: e16000.
Fávaro WJ, Iantas SR, Gonçalves JM, Dias QC, Reis IB, Billis A, Durán N, Alonso JCC. Role of oncotherad immunotherapy in the regulation of toll-like receptors-mediated immune system and RANK/RANKL signaling: new therapeutic perspective for non-muscle invasive bladder cancer. J Clin Oncol. 2019;37: e16004.
Reis IB, Tibo LHS, Socca EAR, de Souza BR, Durán N, Fávaro WJ. Oncotherad® (MRB-CFI-1) nano-immunotherapy reduced tumoral progression in non-muscle invasive bladder cancer through activation of toll-like signaling pathway. Tissue Cell. 2022;76: 101762.
Article CAS PubMed Google Scholar
Fávaro, W.J., Durán-Caballero, N.E. (2021) Method for producing a nanostructured complex (CFI-1), a protein-associated nanostructured complex (MRB-CFI-1) and use. U.S. Patent, Application no. 17/236,848.
Fávaro WJ, Alonso JCC, de Souza BR, Reis IB, Gonçalves JM, Deckmann AC, Oliveira G, Dias QC, Durán N. New synthetic nano-immunotherapy (OncoTherad®) for non-muscle invasive bladder cancer: its synthesis, characterization and anticancer property. Tissue Cell. 2023;80: 101988.
Name JJ, Vasconcelos AR, Souza ACR, Fávaro WJ. Vitamin D, zinc and glutamine: synergistic action with oncotherad imm
Comments (0)