Modulation of the tumor microenvironment in non-muscle-invasive bladder cancer by OncoTherad® (MRB-CFI-1) nanoimmunotherapy: effects on tumor-associated macrophages, tumor-infiltrating lymphocytes, and monoamine oxidases

Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.

Article  CAS  PubMed  Google Scholar 

Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80.

Article  CAS  PubMed  Google Scholar 

Chevalier MF, Trabanelli S, Racle J, Salomé B, Cesson V, Gharbi D, Bohner P, Domingos-Pereira S, Dartiguenave F, Fritschi AS, Speiser DE, Rentsch CA, Gfeller D, Jichlinski P, Nardelli-Haefliger D, Jandus C, Derré L. ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence. J Clin Invest. 2017;127(8):2916–29.

Article  PubMed  PubMed Central  Google Scholar 

Messing EM. Why should we increase public awareness of bladder cancer, and how can we do it? Nat Clin Pract Urol. 2008;5(3):117.

Article  PubMed  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

Article  PubMed  Google Scholar 

Babjuk M, Böhle A, Burger M, Capoun O, Cohen D, Compérat EM, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur Urol. 2017;71:447–61.

Article  PubMed  Google Scholar 

Kamat AM, Lerner SP, O’Donnell M, Georgieva MV, Yang M, Inman BA, et al. Evidence-based assessment of current and emerging bladder-sparing therapies for non-muscle-invasive bladder cancer after bacillus calmette-guerin therapy: a systematic review and meta-analysis. Eur Urol Oncol. 2020;3:318–40.

Article  PubMed  Google Scholar 

Lobo N, Martini A, Kamat AM. Evolution of immunotherapy in the treatment of non-muscle-invasive bladder cancer. Expert Rev Anticancer Ther. 2022;22:361–70.

Article  CAS  PubMed  Google Scholar 

Sharpe AH. Introduction to checkpoint inhibitors and cancer immunotherapy. Immunol Rev. 2017;276:5–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamauchi T, Hoki T, Oba T, Jain V, Chen H, Attwood K, et al. T-cell CX3CR1 expression as a dynamic blood-based biomarker of response to immune checkpoint inhibitors. Nat Commun. 2021;12:1402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allard P, Bernard P, Fradet Y, Têtu B. The early clinical course of primary Ta and T1 bladder cancer: a proposed prognostic index. Br J Urol. 1998;81:692–8.

Article  CAS  PubMed  Google Scholar 

Krabbe LM, Svatek RS, Shariat SF, Messing E, Lotan Y. Bladder cancer risk: use of the PLCO and NLST to identify a suitable screening cohort. Urol Oncol Semin Orig Investig. 2015;33:65.e19-65.e25.

Google Scholar 

Pietzak EJ, Mucksavage P, Guzzo TJ, Malkowicz SB. Heavy cigarette smoking and aggressive bladder cancer at initial presentation. Urology. 2015;86:968–73.

Article  PubMed  Google Scholar 

Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18:153–67.

Article  CAS  PubMed  Google Scholar 

Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA. 2018;115:E4041–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K. Turn back the TIMe: targeting tumor infiltrating myeloid cells to revert cancer progression. Front Immunol. 1977;2018:9.

Google Scholar 

Fujimura T, Kambayashi Y, Fujisawa Y, Hidaka T, Aiba S. Tumor-associated macrophages: therapeutic targets for skin cancer. Front Oncol. 2018;8:3.

Article  PubMed  PubMed Central  Google Scholar 

DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19:369–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang YC, Wang X, Yu J, Ma F, Li Z, Zhou Y, et al. Targeting monoamine oxidase a-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat Commun. 2021;12:3530.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singer TP, Ramsay RR. Monoamine oxidases: old friends hold many surprises. FASEB J. 1995;9:605–10.

Article  CAS  PubMed  Google Scholar 

Wouers J. Structural aspects of monoamine oxidase and its reversible inhibition. Curr Med Chem. 1998;5:137–62.

Article  Google Scholar 

Shih JC, Chen K, Ridd M. Monoamine oxidase: from genes to behavior. Ann Rev Neurosci. 1999;22:197–217.

Article  CAS  PubMed  Google Scholar 

Rybaczyk L, Bashaw M, Pathak D, Huang K. An indicator of cancer: downregulation of monoamine oxidase-a in multiple organs and species. BMC Genom. 2008;9:134.

Article  Google Scholar 

Alfadda A, Sallam R. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012;2012: 936486.

Article  PubMed  PubMed Central  Google Scholar 

Yang Y, Feng R, Wang YZ, Sun HW, Zou QM, Li HB. Toll-like receptors: triggers of regulated cell death and promising targets for cancer therapy. Immunol Lett. 2020;223:1–9.

Article  CAS  PubMed  Google Scholar 

Bourquin C, Pommier A, Hotz C. Harnessing the immune system to fight cancer with toll-like receptor and RIG-I-like receptor agonists. Pharmacol Res. 2020;154:104.

Article  Google Scholar 

Alonso JCC, de Souza BR, Reis IB, de Arruda Camargo GC, Oliveira G, Salmazo MIBF, Gonçalves JM, Castro Roston JR, Caria PHF, Santos AS, Freitas LLL, Billis A, Durán N, Fávaro WJ. Oncotherad®(MRB-CFI-1) nanoimmunotherapy: a promising strategy to treat bacillus calmette-guerin-unresponsive non-muscle-invasive bladder cancer: crosstalk among T-cell CX3CR1, immune checkpoints, and the toll-like receptor 4 signaling pathway. Int J Mol Sci. 2023;24(24):17535.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Böckelmann PK, Tizziani SHS, Durán N, Fávaro WJ. New therapeutic perspective for bladder cancer in dogs: toxicological and clinical effects of oncotherad nanostructured immunotherapy. J Phys Conf Ser. 2019;1323: 012022.

Article  Google Scholar 

Durán N, Dias QC, Fávaro WJ. Oncotherad: a new nanobiological response modifier, its toxicological and anticancer activities. J Phys Conf Ser. 2019;1323: 012018.

Article  Google Scholar 

Fávaro WJ, Iantas SR, Gonçalves JM, Socca EAR, Durán N, Billis A, et al. Single-arm phase I/II study of the safety and efficacy of oncotherad immunomodulator in patients BCG-refractory or relapsed non-muscle invasive bladder cancer. J Clin Oncol. 2019;37: e16000.

Article  Google Scholar 

Fávaro WJ, Iantas SR, Gonçalves JM, Dias QC, Reis IB, Billis A, Durán N, Alonso JCC. Role of oncotherad immunotherapy in the regulation of toll-like receptors-mediated immune system and RANK/RANKL signaling: new therapeutic perspective for non-muscle invasive bladder cancer. J Clin Oncol. 2019;37: e16004.

Article  Google Scholar 

Reis IB, Tibo LHS, Socca EAR, de Souza BR, Durán N, Fávaro WJ. Oncotherad® (MRB-CFI-1) nano-immunotherapy reduced tumoral progression in non-muscle invasive bladder cancer through activation of toll-like signaling pathway. Tissue Cell. 2022;76: 101762.

Article  CAS  PubMed  Google Scholar 

Fávaro, W.J., Durán-Caballero, N.E. (2021) Method for producing a nanostructured complex (CFI-1), a protein-associated nanostructured complex (MRB-CFI-1) and use. U.S. Patent, Application no. 17/236,848.

Fávaro WJ, Alonso JCC, de Souza BR, Reis IB, Gonçalves JM, Deckmann AC, Oliveira G, Dias QC, Durán N. New synthetic nano-immunotherapy (OncoTherad®) for non-muscle invasive bladder cancer: its synthesis, characterization and anticancer property. Tissue Cell. 2023;80: 101988.

Article  PubMed  Google Scholar 

Name JJ, Vasconcelos AR, Souza ACR, Fávaro WJ. Vitamin D, zinc and glutamine: synergistic action with oncotherad imm

Comments (0)

No login
gif