YBX1 promotes epithelial-mesenchymal transition in hepatocellular carcinoma via transcriptional regulation of PLRG1

Llovet M, Josep RK, Kelley A, Villanueva AG, Singal E, Pikarsky S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:6. https://doi.org/10.1038/s41572-020-00240-3.

Article  PubMed  Google Scholar 

Zhang H, Zhang W, Jiang L, Chen Y. Recent advances in systemic therapy for hepatocellular carcinoma. Biomarker Res. 2022;10:3. https://doi.org/10.1186/s40364-021-00350-4.

Article  CAS  Google Scholar 

Attwa MH, El-Etreby SA. Guide for diagnosis and treatment of hepatocellular carcinoma. World J Hepatol. 2015;7:1632–51. https://doi.org/10.4254/wjh.v7.i12.1632.

Article  PubMed  PubMed Central  Google Scholar 

Sarveazad A, Agah S, Babahajian A, Amini N, Bahardoust M. Predictors of 5 year survival rate in hepatocellular carcinoma patients. J Res Med Sci. 2019;24:86. https://doi.org/10.4103/jrms.JRMS_1017_18.

Article  PubMed  PubMed Central  Google Scholar 

Targe M, Yasam VR, Nagarkar R. Hepatocellular carcinoma with uncommon sites of metastasis: a rare case report. Egypt J Radiol Nucl Med. 2021;52:228. https://doi.org/10.1186/s43055-021-00612-z.

Article  Google Scholar 

Tiwari N, Alexander G, Marianthi T, Gerhard C. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22:194–207. https://doi.org/10.1016/j.semcancer.2012.02.013.

Article  CAS  PubMed  Google Scholar 

Dongre A, Weinberg AR. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84. https://doi.org/10.1038/s41580-018-0080-4.

Article  CAS  PubMed  Google Scholar 

Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022;15:1–129. https://doi.org/10.1186/s13045-022-01347-8.

Article  Google Scholar 

Yin Q, Zheng M, Luo Q, Jiang D, Zhang H, Chen C. YB-1 as an oncoprotein: functions, regulation, post-translational modifications, and targeted therapy. Cells. 2022;11:1217. https://doi.org/10.3390/cells11071217.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valentina E, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D, et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell. 2009;15:402–15. https://doi.org/10.1016/j.ccr.2009.03.017.

Article  CAS  Google Scholar 

Xiumei L, Chen D, Chen H, Wang W, Liu Y, Wang Y, et al. YB1 regulates miR-205/200b-ZEB1 axis by inhibiting microRNA maturation in hepatocellular carcinoma. Cancer Commun. 2021;41:576–95. https://doi.org/10.1002/cac2.12164.

Article  Google Scholar 

Wang X, Li Y, Dai H, Xu C. Crystal structure of the WD40 domain of human PLRG1. Biochem Biophys Res Commun. 2021;534:474–7. https://doi.org/10.1016/j.bbrc.2020.11.057.

Article  CAS  Google Scholar 

Sittinan C, Sträßer K. Splicing and Beyond: The many faces of the Prp19 complex. BBA-Mol Cell Res. 2013;1833:2126–34. https://doi.org/10.1016/j.bbamcr.2013.05.023.

Article  CAS  Google Scholar 

Yin J, Zhang YA, Liu TT, Zhu JM, Shen XZ. DNA damage induces down-regulation of Prp19 via impairing Prp19 stability in hepatocellular carcinoma cells. PLoS ONE. 2014;9: e89976. https://doi.org/10.1371/journal.pone.0089976.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Mao W, Wang L, Liu M, Zhang W, Wu Y, et al. Depletion of CDC5L inhibits bladder cancer tumorigenesis. J Cancer. 2020;11:353–63. https://doi.org/10.7150/jca.32850.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang R, Xue R, Qu D, Yin J, Shen XZ. Prp19 Arrests Cell Cycle via Cdc5L in hepatocellular carcinoma cells. Int J Mol Sci. 2017;18:778. https://doi.org/10.3390/ijms18040778.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benjamin AB, Zhou X, Isaac O, Zhao H, Song Y, Chi X, et al. (2014) PRP19 upregulation inhibits cell proliferation in lung adenocarcinomas by p21-mediated induction of cell cycle arrest. Biomed Pharmacother. 2014;68:463–70. https://doi.org/10.1016/j.biopha.2014.03.006.

Article  CAS  PubMed  Google Scholar 

Yin J, Wang L, Zhu JM, Yu Q, Xue RY, Fang Y, et al. Prp19 facilitates invasion of hepatocellular carcinoma via p38 mitogen-activated protein kinase/twist1 pathway. Oncotarget. 2016;7:21939–51. https://doi.org/10.18632/oncotarget.7877.

Article  PubMed  PubMed Central  Google Scholar 

Choi H, Kang M, Lee KH, Kim YS. Elevated level of PLRG1 is critical for the proliferation and maintenance of genome stability of tumor cells. BMB Rep. 2023;56:612–7. https://doi.org/10.5483/BMBRep.2023-0162.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhen L, Ye Y, Liu Y, Liu Y, Chen H, Shen M, et al. RNA helicase DHX37 facilitates liver cancer progression by cooperating with PLRG1 to drive superenhancer-mediated transcription of Cyclin D1. Cancer Res. 2022;82:1937–52. https://doi.org/10.1158/0008-5472.CAN-21-3038.

Article  Google Scholar 

Shuyan L, Wang T, Shi Y, Bai L, Wang S, Guo D, et al. USP42 Drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death Differ. 2021;28:2482–98. https://doi.org/10.1038/s41418-021-00763-6.

Article  CAS  Google Scholar 

Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:556–60. https://doi.org/10.1093/nar/gkz430.

Article  CAS  Google Scholar 

Llères D, Denegri M, Biggiogera M, Ajuh P, Lamond AI. Direct interaction between HnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Rep. 2010;11:445–51. https://doi.org/10.1038/embor.2010.64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther. 2021;6:78. https://doi.org/10.1038/s41392-021-00486-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16:413–30. https://doi.org/10.1038/nrc.2016.51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anczukow O, Krainer AR. Splicing-factor alterations in cancers. RNA. 2016;22:1285–301. https://doi.org/10.1261/rna.057919.116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du JX, Luo YH, Zhang SJ, Wang B, Chen C, Zhu GQ, et al. Splicing factor SRSF1 promotes breast cancer progression via oncogenic splice switching of PTPMT1. J Exp Clin Cancer Res. 2021;40:171. https://doi.org/10.1186/s13046-021-01978-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stickeler E, Fraser SD, Honig A, Chen AL, Berget SM, Cooper TA. The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. EMBO J. 2001;20:3821–30. https://doi.org/10.1093/emboj/20.14.3821.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo T, Zhao S, Wang P, Xue X, Zhang Y, Yang M, et al. YB-1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma. Oncotarget. 2017;8:48110–25. https://doi.org/10.18632/oncotarget.18262.

Article 

Comments (0)

No login
gif