Cromwell MEM, Hilario E, Jacobson F. Protein aggregation and bioprocessing. AAPS J. 2006;8:E572–9. https://doi.org/10.1208/aapsj080366.
Article CAS PubMed PubMed Central Google Scholar
Hermeling S, Crommelin DJA, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins. Pharmaceut Res. 2004;21:897–903. https://doi.org/10.1023/b:pham.0000029275.41323.a6.
Ripple DC, Dimitrova MN. Protein particles: what we know and what we do not know. J Pharm Sci. 2012;101:3568–79. https://doi.org/10.1002/jps.23242.
Article CAS PubMed Google Scholar
Garidel P, Kuhn AB, Schäfer LV, Karow-Zwick AR, Blech M. High-concentration protein formulations: how high is high? Eur J Pharm Biopharm. 2017;119:353–60. https://doi.org/10.1016/j.ejpb.2017.06.029.
Article CAS PubMed Google Scholar
Corvari V, Narhi LO, Spitznagel TM, Afonina N, Cao S, Cash P, et al. Subvisible (2–100 μm) Particle analysis during biotherapeutic drug product development: part 2. Experience with the application of subvisible particle analysis. Biologicals. 2015;43:457–73. https://doi.org/10.1016/j.biologicals.2015.07.011.
Article CAS PubMed Google Scholar
Narhi LO, Corvari V, Ripple DC, Afonina N, Cecchini I, Defelippis MR, et al. Subvisible (2–100 μm) particle analysis during biotherapeutic drug product development: part 1. Considerations and strategy. J Pharm Sci. 2015;104:1899–908. https://doi.org/10.1002/jps.24437.
Article CAS PubMed Google Scholar
Gross-Rother J, Blech M, Preis E, Bakowsky U, Garidel P. Particle detection and characterization for biopharmaceutical applications: current principles of established and alternative techniques. Pharmaceutics. 2020;12:1112. https://doi.org/10.3390/pharmaceutics12111112.
Article CAS PubMed PubMed Central Google Scholar
Wang W, Nema S, Teagarden D. Protein aggregation—pathways and influencing factors. Int J Pharm. 2010;390:89–99. https://doi.org/10.1016/j.ijpharm.2010.02.025.
Article CAS PubMed Google Scholar
Garidel P, Kebbel F. Protein therapeutics and aggregates characterized by photon correlation spectroscopy. BioProcess International. 2010;8:38–46.
Blech M, Melien R, Tschammer N, Presser B, Hinderberger D, Garidel P. Expanding the toolbox for predictive parameters describing antibody stability considering thermodynamic and kinetic determinants. Pharm Res. 2021;38:2065–89. https://doi.org/10.1007/s11095-021-03120-x.
Article CAS PubMed Google Scholar
Narhi LO, Schmit J, Bechtold-Peters K, Sharma D. Classification of protein aggregates. J Pharm Sci. 2012;101:493–8. https://doi.org/10.1002/jps.22790.
Article CAS PubMed Google Scholar
Garidel P, Herre A, Kliche W. Microscopic methods for particle characterization in protein pharmaceuticals. In: Mahler HC, Jiskoot W, editors. Analysis of aggregates and particles in protein pharmaceuticals. 1st ed. Hoboken, New Jersey: John Wiley & Sons Inc; 2012. p. 269–302. https://doi.org/10.1002/9781118150573.ch12. Chapter 12.
Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, et al. Immunogenicity of therapeutic protein aggregates. J Pharm Sci. 2016;105:417–30. https://doi.org/10.1016/j.xphs.2015.11.002.
Article CAS PubMed Google Scholar
Langille SE. Particulate matter in injectable drug products. PDA J Pharm Sci Tech. 2013;67:186–200. https://doi.org/10.5731/pdajpst.2013.00922.
Kijanka G, Bee JS, Korman SA, Wu Y, Roskos LK, Schenerman MA, et al. Submicron size particles of a murine monoclonal antibody are more immunogenic than soluble oligomers or micron size particles upon subcutaneous administration in mice. J Pharm Sci. 2018;107:2847–59. https://doi.org/10.1016/j.xphs.2018.06.029.
Article CAS PubMed Google Scholar
Swanson MD, Rios S, Mittal S, Soder G, Jawa V. Immunogenicity risk assessment of spontaneously occurring therapeutic monoclonal antibody aggregates. Front Immunol. 2022;13: 915412. https://doi.org/10.3389/fimmu.2022.915412.
Article CAS PubMed PubMed Central Google Scholar
Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99:3302–21. https://doi.org/10.1002/jps.22097.
Article CAS PubMed Google Scholar
Fawaz I, Schaz S, Boehrer A, Garidel P, Blech M. Micro-flow imaging multi-instrument evaluation for sub-visible particle detection. Eur J Pharm Biopharm. 2023;185:55–70. https://doi.org/10.1016/j.ejpb.2023.01.017.
Article CAS PubMed Google Scholar
Schleinzer F, Strebl M, Blech M, Garidel P. Backgrounded membrane imaging—a valuable alternative for particle detection of biotherapeutics? J Pharm Innov. 2023; 18:1–19. https://doi.org/10.1007/s12247-023-09734-5.
Benkstein KD, Balakrishnan G, Bhirde A, Chalus P, Das TK, Do N, et al. An interlaboratory comparison on the characterization of a sub-micrometer polydisperse particle dispersion. J Pharm Sci. 2022;111:699–709. https://doi.org/10.1016/j.xphs.2021.11.006.
Article CAS PubMed Google Scholar
Telikepalli SN, Carrier MJ, Ripple DC, Barnett G, Bhirde A, Bolton D, et al. An interlaboratory study to identify potential visible protein-like particle standards. AAPS PharmSciTech. 2022;24:18. https://doi.org/10.1208/s12249-022-02457-9.
Article CAS PubMed Google Scholar
FDA US. Guidance for industry: immunogenicity assessment for therapeutic protein products. US FDA; 2014. https://www.fda.gov/media/85017/download. Accessed 5 Feb 2024.
Roesch A, Zölls S, Stadler D, Helbig C, Wuchner K, Kersten G, et al. Particles in biopharmaceutical formulations, part 2: an update on analytical techniques and applications for therapeutic proteins, viruses, vaccines and cells. J Pharm Sci. 2021;111:933–50. https://doi.org/10.1016/j.xphs.2021.12.011.
Article CAS PubMed Google Scholar
Europäisches Arzneibuch. 6th ed. Deutscher Apotheker Verlag. 2022, ISBN 978-3-7692-8110-1; 2022.
USP-NF 2021 Issue 1: The United States Pharmacopeia and National Formulary. 2021. https://online.uspnf.com/uspnf. Accessed 5 Feb 2024.
Gross J, Sayle S, Karow AR, Bakowsky U, Garidel P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: influence of experimental and data evaluation parameters. Eur J Pharm Biopharm. 2016;104:30–41. https://doi.org/10.1016/j.ejpb.2016.04.013.
Article CAS PubMed Google Scholar
Vestad B, Llorente A, Neurauter A, Phuyal S, Kierulf B, Kierulf P, et al. Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: a variation study. J Extracell Vesicles. 2017;6:1344087. https://doi.org/10.1080/20013078.2017.1344087.
Article CAS PubMed PubMed Central Google Scholar
Bachurski D, Schuldner M, Nguyen P-H, Malz A, Reiners KS, Grenzi PC, et al. Extracellular vesicle measurements with nanoparticle tracking analysis — an accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles. 2019;8:1596016. https://doi.org/10.1080/20013078.2019.1596016.
Article CAS PubMed PubMed Central Google Scholar
Kim A, Ng WB, Bernt W, Cho N-J. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. Sci Rep. 2019;9:2639. https://doi.org/10.1038/s41598-019-38915-x.
Article CAS PubMed PubMed Central Google Scholar
Huber MJ, Ivleva NP, Booth AM, Beer I, Bianchi I, Drexel R, et al. Physicochemical characterization and quantification of nanoplastics: applicability, limitations and complementarity of batch and fractionation methods. Anal Bioanal Chem. 2023;415:3007–31. https://doi.org/10.1007/s00216-023-04689-5.
Comments (0)