Green Synthesis of Silver Nanoparticles by Using Anthemis Tricolor Boiss., Factorial Design for Parameter Optimization, Characterization and In-Vitro Biological Activities

Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials:history, sources, toxicity and regulations. Beilstein J Nanotech. 2018;9:1050–74. https://doi.org/10.3762%2Fbjnano.9.98.

Article  CAS  Google Scholar 

Kavitha KS, Syed B, Rakshith D, Kavitha HU, Yashwantha Rao HC, Harini BP, Satish S. Plants as green source towards synthesis of nanoparticles. Int Res J Biol Sci. 2013;6:66–76.

Google Scholar 

Yilmaz M, Turkdemir H, Kilic MA, Bayram E, Cicek A, Mete A, Ulug B. Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana Mater. Chem. Phys. 2011; 130: 1195–1202. https://doi.org/10.1016/j.matchemphys.2011.08.068.

Kotakadi VS, Goddam SA, Venkata SK. Ficus fruit -mediated biosynthesis of silver nanoparticles and their antibacterial activity against antibiotic resistant E.coli strains. Curr. Nanosci. 2015; 11(4): 527–538. https://doi.org/10.2174/1573413711666150126225951.

Goddam SA, Kotakadi VS, Gopal DVRS, Rao YS, Reddy AV. Efficient and robust biofabrication of silver nanoparticles by Cassia alata leaf extract and their antimicrobial activity. J Nanostructure Chem. 2014;4:73–82. https://doi.org/10.1007/s40097-014-0082-5.

Article  Google Scholar 

Baghizadeh A, Ranjbar S, Gupta VK, Asif M, Pourseyedi S, Karimi MJ, Mohammadinejad RJ, Mol. Liq. 2015;207:159–63. https://doi.org/10.1016/j.molliq.2015.03.029.

Article  CAS  Google Scholar 

Ajitha B, Ashok KRY, Sreedhara RP. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract mat. Sci Eng C. 2015;49:373–81. https://doi.org/10.1016/j.msec.2015.01.035.

Article  CAS  Google Scholar 

Leonard K, Ahmmad B, Okamura H, Kurawaki. J. In-situ green synthesis of biocompatible Ginseng Capped gold nanoparticles with remarkable stability. Colloids Surf B-Bio-Interfaces. 2011;82(2):391–6. https://doi.org/10.1016/j.colsurfb.2010.09.020.

Article  CAS  Google Scholar 

Wang Y-X, Su W-C, Wang O, Lin Y-F, Zhou Y, Lin L-F, Ren S, Li Y-T, Chen Q-X, Shi Y. Antityrosinase and antioxidant activities of guanidine compounds and effect of guanylthiourea on melanogenesis. Process Biochem. 2019;85:84–96. https://doi.org/10.1016/j.procbio.2019.07.003.

Article  CAS  Google Scholar 

Zolghadri S, Bahrami A, Khan MTH, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme İnhib Med Chem. 2019;34:279–309. https://doi.org/10.1080%2F14756366.2018.1545767.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis PH. Flora of Turkey and East Aegean Islands. Edinburgh: Edinburgh University; 1984.

Google Scholar 

Karaalp C, Erel SB, Nalbantsoy A, Gucel S, Demirci B, Baser KHC. The essential composition of aerial parts of Anthemis Tricolor Boiss. From Cyprus. Nat Prod Res. 2014;28(7):488–91. https://doi.org/10.1080/14786419.2013.867857.

Article  CAS  PubMed  Google Scholar 

Sut S, Dall’Acqua S, Zengin G, Senkardes İ, Bulut G. Influence of different extraction techniques on the chemical profile and biological properties of Anthemis cotula L.: Multifuncitonal aspects for potential pharmaceutical applications. J Pharm Biol Sci. 2019;173:75–85. https://doi.org/10.1016/j.jpba.2019.05.028.

Article  CAS  Google Scholar 

Djeridane A, Yousfi M, Najdemi B, Vidal N, Lesgards JF, Stocker P. Screening of some Algerian medicinal plants for the phenolic compounds and their antioxidant activity. Eur Food Res Tech. 2007;224:801–9. https://doi.org/10.1007/s00217-006-0361-6.

Article  CAS  Google Scholar 

Gür M, Güder A, Verep D, Güney K, Özkan OE, Seki N, Kandemirli F. Some important plants for epilepsy treatment: antioxidant activity and flavonoid compositions. Iran J Sci Technol Trans Sci. 2018;42:1847–57. https://doi.org/10.1007/s40995-017-0361-3.

Article  Google Scholar 

Belhaoues S, Amri S, Bensouilah M. Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. S Afr J Bot. 2020;131:200–5. https://doi.org/10.1016/j.sajb.2020.02.018.

Article  CAS  Google Scholar 

Bursal E, Aras A, Kılıç Ö, Buldurun K. Chemical constituent and radical scavenging antioxidant activity of Anthemis kotschyana Boiss. Nat Prod Res. 2020; online. https://doi.org/10.1080/14786419.2020.1723089.

Sarıkürkçü C. Anthemis Chia: Biological Capacity and phytochemistry. Ind Crops Prod. 2020;153:112578. https://doi.org/10.1016/j.indcrop.2020.112578.

Article  CAS  Google Scholar 

Ghamipoor S, Fayyazi F, Bahadorikhalili S. Phytochemical synthesis of silver nanoparticles using Anthemis nobilis extract and its antibacterial activity. Z Phys Chem. 2020;234(3):531–40. https://doi.org/10.1515/zpch-2018-1288.

Article  CAS  Google Scholar 

Pourmortazavi SM, Taghdiri M, Makari V, Rahimi-Masrabadi M. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim Acta Mol Biomol Spec. 2015;136:1249–54. https://doi.org/10.1016/j.saa.2014.10.010.

Article  CAS  Google Scholar 

Ekaji FA, Akujobi CO, Umeh SI. Optimization of selected process parameter affecting yield of green synthesized silver nanoparticles and their antibacterial activity. Biotechnol J Int. 2021;25(2):25–36. https://doi.org/10.9734/BJI/2021/v25i230136.

Article  Google Scholar 

Pasupuleti VR, Prasad T, Shiekh RA. Biogenic silver nanoparticles using Rhinacanthus Nasutus leaf extract:synthesis, spectral analysis, and antimicrobial studies. Int J Nanomed. 2013;8:3355–64. https://doi.org/10.2147/IJN.S49000.

Article  CAS  Google Scholar 

Awwad AM, Salem NM. A green and facile approach for synthesis of magnetite nanoparticles. Mater Lett. 2012;2(6):208–13. https://doi.org/10.5923/j.nn.20120206.09.

Article  CAS  Google Scholar 

Dinesh S, Karthikeyan S, Arumugam P. Biosynthesis of silver nanoparticles from Glycyrrhiza glabra root extract. Arch Appl Sci Res. 2012;4:178–87.

Google Scholar 

Chunyan W, Valiyaveettil S. Correlation of biocapping agents with cytotoxic effects of silver nanoparticles on human tumor cells. RSC Adv; R Soc Chem. 2013;3:14329–38. https://doi.org/10.1039/c3ra41346b.

Article  CAS  Google Scholar 

Esmaeili MA, Sonboli A. Antioxidant, free radical scavenging activities of Salvia branchyantha and its protective effect against oxidative cell injury. Food Chem Toxicol. 2010;48:846–53. https://doi.org/10.1016/j.fct.2009.12.020.

Article  CAS  PubMed  Google Scholar 

Rer A, Pellegrini N, Proteggente A, Pannola A, Yong M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cotion decolorization assay. Free Rad Biol Med. 1999;26:1231–7. https://doi.org/10.1016/S0891-5849(98)00315-3.

Article  Google Scholar 

Apak R, Güçlü K, Özyürek M, Karademir SE. A novel total antioxidant capacity index for dietarypolyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: the CUPRAC method. J Agric Food Chem. 2004;52:7970–81. https://doi.org/10.1021/jf048741x.

Article  CAS  PubMed  Google Scholar 

Masuda T, Yamashita D, Takeda Y, Yonemori S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia Subelliptica. Biosci Biotechnol Biochem. 2005;69:197–201. https://doi.org/10.1271/bbb.69.197.

Article  CAS  PubMed  Google Scholar 

Riaz M, Ismail M, Ahmad B, Zahid N, Jabbour G, Khan MS, Mutreja V, Sareen S, Rafiq A, Faheem M, Shah MM, Khan MI, Bukhari SAI, Park J. Characterizations and analysis of the antioxidant, antimicrobial, and dye reduction ability of green synthesized silver nanoparticles. Green Process Synth. 2020;9:693–705.

Article  Google Scholar 

Sahudin S, Ayumi NS, Kaharudin N. Enhancement of skin permeation and penetration of Arbutin fabricated in Chitosan Nanoparticles as the Delivery System. Cosmetics. 2022;9:114. https://doi.org/10.3390/cosmetics9060114.

Article  CAS  Google Scholar 

Gupta V, Mohapatra S, Mishra H. Nanaotechnology in cosmetics and Cosmeceuticals- A review of latest advancements. Gels. 2022;8:173. https://doi.org/10.3390/gels8030173.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sindhu PD, Mukerjhee A, Chandrasekoran N. Phytosynthesis of silver nanoparticles using Ceriops tagal and its antimicrobial potential against human pathogens. Int J Pharm Pharm Sci. 2013;5(3):349–52.

Google Scholar 

Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK. Green synthesis of silver nanoparticle by Penicillium Purpurogenum NPMF: the process and optimization. J Nanopart Res. 2011;13:3129–37. https://doi.org/10.1007/s11051-010-0208-8.

Article  CAS  Google Scholar 

Jalab J, Abdelwahed W, Kitaz A, Al-Kayali E. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon. 2021;7:e08033. https://doi.org/10.1016/j.heliyon.2021.e08033.

Article  CAS  PubMed 

Comments (0)

No login
gif