Fabrication, Physicochemical Characterization, and in Silico Evaluation of Bilayer Nanofibers as a Potential Sustained Crocin Delivery Dressing

Ghaffari S, Roshanravan N. Saffron; an updated review on biological properties with special focus on cardiovascular effects. Biomed Pharmacother. 2019;109:21–7. https://doi.org/10.1016/j.biopha.2018.10.031.

Article  CAS  PubMed  Google Scholar 

Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, et al. The pharmacological activities of Crocus sativus L.: a review based on the mechanisms and Therapeutic opportunities of its phytoconstituents. Oxid Med Cell Longev. 2022:8214821. https://doi.org/10.1155/2022/8214821.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerdá-Bernad D, Valero-Cases E, Pastor JJ, Frutos MJ. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr. 2022;62(12):3232–49. https://doi.org/10.1080/10408398.2020.1864279.

Article  CAS  PubMed  Google Scholar 

Deldar N, Monsefi M, Salmanpour M, Ostovar M, Heydari M. Wound healing potential of crocin and safranal, main saffron (Crocus sativus L.), the active constituents in excision wound model in rats. Galen Med J. 2021;10:e1900–1900.

Article  Google Scholar 

Sung Y-Y, Kim HK. Crocin ameliorates atopic dermatitis symptoms by down regulation of Th2 response via blocking of NF-κB/STAT6 signaling pathways in mice. Nutrients. 2018;10(11):1625.

Article  PubMed  PubMed Central  Google Scholar 

Rameshrad M, Razavi BM, Hosseinzadeh H. Saffron and its derivatives, crocin, crocetin and safranal: a patent review. Expert Opin Ther Pat. 2018;28(2):147–65. https://doi.org/10.1080/13543776.2017.1355909.

Article  CAS  PubMed  Google Scholar 

Esposito E, Drechsler M, Huang N, Pavoni G, Cortesi R, Santonocito D, et al. Ethosomes and organogels for cutaneous administration of crocin. Biomed Microdevices. 2016;18(6):108. https://doi.org/10.1007/s10544-016-0134-3.

Article  CAS  PubMed  Google Scholar 

Chou S-F, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release. 2015;220:584–91. https://doi.org/10.1016/j.jconrel.2015.09.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Su J, Brennan CS, Van der Meeren P, Zhang N, Tong Y, et al. Recent developments of electrospun zein nanofibres: strategies, fabrication and therapeutic applications. Mater Today Adv. 2022;16:100307. https://doi.org/10.1016/j.mtadv.2022.100307.

Article  CAS  Google Scholar 

Krishnamoorthy V, Elumalai G, Rajiv S. Environment friendly synthesis of polyvinylpyrrolidone nanofibers and their potential use as seed coats. New J Chem. 2016;40(4):3268–76. https://doi.org/10.1039/C5NJ03008K.

Article  CAS  Google Scholar 

Sofi HS, Abdal-Hay A, Ivanovski S, Zhang YS, Sheikh FA. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: current status and future perspectives. Mater Sci Eng C Mater Biol Appl. 2020;111:110756. https://doi.org/10.1016/j.msec.2020.110756.

Article  CAS  PubMed  Google Scholar 

Chen Y-C, Gad SF, Chobisa D, Li Y, Yeo Y. Local drug delivery systems for inflammatory diseases: Status quo, challenges, and opportunities. J Control Release. 2021;330:438–60. https://doi.org/10.1016/j.jconrel.2020.12.025.

Article  CAS  PubMed  Google Scholar 

Raina N, Rani R, Thakur VK, Gupta M. New insights in topical drug delivery for skin disorders: from a nanotechnological perspective. ACS Omega. 2023;8(22):19145–67. https://doi.org/10.1021/acsomega.2c08016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomar Y, Pandit N, Priya S, Singhvi G. Evolving trends in nanofibers for topical delivery of therapeutics in skin disorders. ACS Omega. 2023;8(21):18340–57. https://doi.org/10.1021/acsomega.3c00924.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamdan N, Yamin A, Hamid SA, Khodir W, Guarino V. Functionalized Antimicrobial nanofibers: design criteria and recent advances. J Funct Biomater. 2021;12(4). https://doi.org/10.3390/jfb12040059.

Zhang X, Wang Y, Gao Z, Mao X, Cheng J, Huang L, et al. Advances in wound dressing based on electrospinning nanofibers. J Appl Polym Sci. 2024;141(1):e54746.

Article  CAS  Google Scholar 

Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Mater Sci Eng C Mater Biol Appl. 2019;94:1102–24. https://doi.org/10.1016/j.msec.2018.10.069.

Article  CAS  PubMed  Google Scholar 

Labib G. Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering. Expert Opin Drug Deliv. 2018;15(1):65–75. https://doi.org/10.1080/17425247.2017.1349752.

Article  CAS  PubMed  Google Scholar 

Liu F, Li X, Wang L, Yan X, Ma D, Liu Z, et al. Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: an efficient strategy to accelerate diabetic wound healing. Int J Biol Macromol. 2020;149:627–38. https://doi.org/10.1016/j.ijbiomac.2020.01.277.

Article  CAS  PubMed  Google Scholar 

Lu H, Wang Q, Li G, Qiu Y, Wei Q. Electrospun water-stable zein/ethyl cellulose composite nanofiber and its drug release properties. Mater Sci Eng C Mater Biol Appl. 2017;74:86–93. https://doi.org/10.1016/j.msec.2017.02.004.

Article  CAS  PubMed  Google Scholar 

Jalaja K, Sreehari VS, Kumar PRA, Nirmala RJ. Graphene oxide decorated electrospun gelatin nanofibers: fabrication, properties and applications. Mater Sci Eng C Mater Biol Appl. 2016;64:11–9. https://doi.org/10.1016/j.msec.2016.03.036.

Article  CAS  PubMed  Google Scholar 

Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol. 2020;148:1084–97. https://doi.org/10.1016/j.ijbiomac.2019.12.275.

Article  CAS  PubMed  Google Scholar 

Azari A, Golchin A, Mahmoodinia Maymand M, Mansouri F, Ardeshirylajimi A. Electrospun Polycaprolactone nanofibers: current research and applications in biomedical application. Adv Pharm Bull. 2022;12(4):658–72. https://doi.org/10.34172/apb.2022.070.

Article  CAS  PubMed  Google Scholar 

Babadi D, Dadashzadeh S, Shahsavari Z, Shahhosseini S, ten Hagen TLM, Haeri A. Piperine-loaded electrospun nanofibers, an implantable anticancer controlled delivery system for postsurgical breast cancer treatment. Int J Pharm. 2022;624:121990. https://doi.org/10.1016/j.ijpharm.2022.121990.

Article  CAS  PubMed  Google Scholar 

Khoshbakht S, Asghari-Sana F, Fathi-Azarbayjani A, Sharifi Y. Fabrication and characterization of tretinoin-loaded nanofiber for topical skin delivery. Biomater Res. 2020;24(1):8. https://doi.org/10.1186/s40824-020-00186-3.

Article  CAS  Google Scholar 

Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–23.

CAS  PubMed  Google Scholar 

Trucillo P. Drug carriers: a review on the most used mathematical models for drug release. Processes. 2022;10(6):1094.

Article  CAS  Google Scholar 

Shinde P, Agraval H, Srivastav AK, Yadav UCS, Kumar U. Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking. Int J Pharm. 2020;588:119795. https://doi.org/10.1016/j.ijpharm.2020.119795.

Article  CAS  PubMed  Google Scholar 

Carmelo-Luna FJ, Mendoza-Wilson AM, Ramos-Clamont Montfort G, Lizardi-Mendoza J, Madera-Santana T, Lardizábal-Gutiérrez D, et al. Synthesis and experimental/computational characterization of sorghum procyanidins-gelatin nanoparticles. Bioorg Med Chem. 2021;42:116240. https://doi.org/10.1016/j.bmc.2021.116240.

Article  CAS 

Comments (0)

No login
gif