Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095. https://doi.org/10.1152/physrev.00042.2003
Article CAS PubMed Google Scholar
Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58:760–793. https://doi.org/10.1007/pl00000899
Article CAS PubMed Google Scholar
van den Pol AN, Gorcs T (1988) Glycine and glycine receptor immunoreactivity in brain and spinal cord. J Neurosci 8:472–492. https://doi.org/10.1523/JNEUROSCI.08-02-00472.1988
Article PubMed PubMed Central Google Scholar
Husson Z, Rousseau CV, Broll I, Zeilhofer HU, Dieudonne S (2014) Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei. J Neurosci 34:9418–9431. https://doi.org/10.1523/JNEUROSCI.0401-14.2014
Article CAS PubMed PubMed Central Google Scholar
Sherman D, Worrell JW, Cui Y, Feldman JL (2015) Optogenetic perturbation of preBotzinger complex inhibitory neurons modulates respiratory pattern. Nat Neurosci 18:408–414. https://doi.org/10.1038/nn.3938
Article CAS PubMed PubMed Central Google Scholar
Punnakkal P, von Schoultz C, Haenraets K, Wildner H, Zeilhofer HU (2014) Morphological, biophysical and synaptic properties of glutamatergic neurons of the mouse spinal dorsal horn. J Physiol 592:759–776. https://doi.org/10.1113/jphysiol.2013.264937
Article CAS PubMed PubMed Central Google Scholar
Wilcox KS, Fitzsimonds RM, Johnson B, Dichter MA (1996) Glycine regulation of synaptic NMDA receptors in hippocampal neurons. J Neurophysiol 76:3415–3424. https://doi.org/10.1152/jn.1996.76.5.3415
Article CAS PubMed Google Scholar
Laboute T, Zucca S, Holcomb M, Patil DN, Garza C, Wheatley BA, Roy RN, Forli S, Martemyanov KA (2023) Orphan receptor GPR158 serves as a metabotropic glycine receptor: mGlyR. Science 379:1352–1358. https://doi.org/10.1126/science.add7150
Article CAS PubMed PubMed Central Google Scholar
Hou M, Duan L, Slaughter MM (2008) Synaptic inhibition by glycine acting at a metabotropic receptor in tiger salamander retina. J Physiol 586:2913–2926. https://doi.org/10.1113/jphysiol.2008.153437
Article CAS PubMed PubMed Central Google Scholar
Li W, Zuo W, Wu W, Zuo QK, Fu R, Wu L, Zhang H, Ndukwe M, Ye JH (2019) Activation of glycine receptors in the lateral habenula rescues anxiety- and depression-like behaviors associated with alcohol withdrawal and reduces alcohol intake in rats. Neuropharmacology 157:107688. https://doi.org/10.1016/j.neuropharm.2019.107688
Article CAS PubMed PubMed Central Google Scholar
Fu X, Wei S, Wang T, Fan H, Zhang Y, Costa CD, Brandner S, Yang G, Pan Y, He Y, Li N (2022) Research Status of the Orphan G protein coupled receptor 158 and future perspectives. Cells 11. https://doi.org/10.3390/cells11081334
Kosmidis S, Polyzos A, Harvey L, Youssef M, Denny CA, Dranovsky A, Kandel ER (2018) RbAp48 protein is a critical component of GPR158/OCN signaling and ameliorates age-related memory loss. Cell Rep 25:959–973e6. https://doi.org/10.1016/j.celrep.2018.09.077
Article CAS PubMed PubMed Central Google Scholar
Orlandi C, Sutton LP, Muntean BS, Song C, Martemyanov KA (2019) Homeostatic cAMP regulation by the RGS7 complex controls depression-related behaviors. Neuropsychopharmacology 44:642–653. https://doi.org/10.1038/s41386-018-0238-y
Article CAS PubMed Google Scholar
Sutton LP, Orlandi C, Song C, Oh WC, Muntean BS, Xie K, Filippini A, Xie X, Satterfield R, Yaeger JDW, Renner KJ, Young SM Jr., Xu B, Kwon H, Martemyanov KA (2018) Orphan receptor GPR158 controls stress-induced depression. Elife 7. https://doi.org/10.7554/eLife.33273
Orlandi C, Posokhova E, Masuho I, Ray TA, Hasan N, Gregg RG, Martemyanov KA (2012) GPR158/179 regulate G protein signaling by controlling localization and activity of the RGS7 complexes. J Cell Biol 197:711–719. https://doi.org/10.1083/jcb.201202123
Article CAS PubMed PubMed Central Google Scholar
Orlandi C, Xie K, Masuho I, Fajardo-Serrano A, Lujan R, Martemyanov KA (2015) Orphan receptor GPR158 is an allosteric modulator of RGS7 Catalytic Activity with an essential role in Dictating its expression and localization in the brain. J Biol Chem 290:13622–13639. https://doi.org/10.1074/jbc.M115.645374
Article CAS PubMed PubMed Central Google Scholar
Hajj M, De Vita T, Vol C, Renassia C, Bologna JC, Brabet I, Cazade M, Pastore M, Blahos J, Labesse G, Pin JP, Prezeau L (2019) Nonclassical ligand-independent regulation of Go protein by an Orphan Class C G-Protein-coupled receptor. Mol Pharmacol 96:233–246. https://doi.org/10.1124/mol.118.113019
Article CAS PubMed Google Scholar
Song C, Orlandi C, Sutton LP, Martemyanov KA (2019) The signaling proteins GPR158 and RGS7 modulate excitability of L2/3 pyramidal neurons and control A-type potassium channel in the prelimbic cortex. J Biol Chem 294:13145–13157. https://doi.org/10.1074/jbc.RA119.007533
Article CAS PubMed PubMed Central Google Scholar
Cetereisi D, Kramvis I, Gebuis T, van der Loo RJ, Gouwenberg Y, Mansvelder HD, Li KW, Smit AB, Spijker S (2019) Gpr158 Deficiency impacts hippocampal CA1 neuronal excitability, Dendritic Architecture, and affects spatial learning. Front Cell Neurosci 13:465. https://doi.org/10.3389/fncel.2019.00465
Article CAS PubMed PubMed Central Google Scholar
Condomitti G, Wierda KD, Schroeder A, Rubio SE, Vennekens KM, Orlandi C, Martemyanov KA, Gounko NV, Savas JN, de Wit J (2018) An input-specific orphan receptor GPR158-HSPG Interaction organizes hippocampal mossy Fiber-CA3 synapses. Neuron 100:201–215e9. https://doi.org/10.1016/j.neuron.2018.08.038
Article CAS PubMed PubMed Central Google Scholar
Khrimian L, Obri A, Ramos-Brossier M, Rousseaud A, Moriceau S, Nicot AS, Mera P, Kosmidis S, Karnavas T, Saudou F, Gao XB, Oury F, Kandel E, Karsenty G (2017) Gpr158 mediates osteocalcin’s regulation of cognition. J Exp Med 214:2859–2873. https://doi.org/10.1084/jem.20171320
Article CAS PubMed PubMed Central Google Scholar
Chang J, Song Z, Wei S, Zhou Y, Ju J, Yao P, Jiang Y, Jin H, Chi X, Li N (2023) Expression mapping and functional analysis of Orphan G-Protein-coupled receptor GPR158 in the adult mouse brain using a GPR158 transgenic mouse. Biomolecules 13. https://doi.org/10.3390/biom13030479
Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63. https://doi.org/10.1111/j.1749-6632.1999.tb09260.x
Article CAS PubMed Google Scholar
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith AC, Roberts-Wolfe D, Kalivas PW (2016) The Nucleus Accumbens: mechanisms of addiction across drug classes reflect the importance of Glutamate Homeostasis. Pharmacol Rev 68:816–871. https://doi.org/10.1124/pr.116.012484
Article CAS PubMed PubMed Central Google Scholar
Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr., Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432. https://doi.org/10.1126/science.2147780
Article CAS PubMed Google Scholar
Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW (2015) Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 18:1230–1232. https://doi.org/10.1038/nn.4068
Article CAS PubMed PubMed Central Google Scholar
Smith RJ, Lobo MK, Spencer S, Kalivas PW (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol 23:546–552. https://doi.org/10.1016/j.conb.2013.01.026
Comments (0)