Uncovering the role of TET2-mediated ENPEP activation in trophoblast cell fate determination

Rossant J, Tam PPL (2022) Early human embryonic development: blastocyst formation to gastrulation. Dev Cell 57(2):152–165. https://doi.org/10.1016/j.devcel.2021.12.022

Article  CAS  PubMed  Google Scholar 

Burton GJ, Fowden AL (2015) The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci 370(1663):20140066. https://doi.org/10.1098/rstb.2014.0066

Article  PubMed  PubMed Central  Google Scholar 

Yao C, Zhang W, Shuai L (2019) The first cell fate decision in pre-implantation mouse embryos. Cell Regen 8(2):51–57. https://doi.org/10.1016/j.cr.2019.10.001

Article  PubMed  PubMed Central  Google Scholar 

Lanner F (2014) Lineage specification in the early mouse embryo. Exp Cell Res 321(1):32–39. https://doi.org/10.1016/j.yexcr.2013.12.004

Article  CAS  PubMed  Google Scholar 

Gerri C, McCarthy A, Mei Scott G, Regin M, Stamatiadis P, Brumm S et al (2023) A conserved role of the Hippo signalling pathway in initiation of the first lineage specification event across mammals. Development. https://doi.org/10.1242/dev.201112

Article  PubMed  PubMed Central  Google Scholar 

Gerri C, McCarthy A, Alanis-Lobato G, Demtschenko A, Bruneau A, Loubersac S et al (2020) Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587(7834):443–447. https://doi.org/10.1038/s41586-020-2759-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ortega NM, Winblad N, Plaza Reyes A, Lanner F (2018) Functional genetics of early human development. Curr Opin Genet Dev 52:1–6. https://doi.org/10.1016/j.gde.2018.04.005

Article  CAS  PubMed  Google Scholar 

Soncin F, Natale D, Parast MM (2015) Signaling pathways in mouse and human trophoblast differentiation: a comparative review. Cell Mol Life Sci 72(7):1291–1302. https://doi.org/10.1007/s00018-014-1794-x

Article  CAS  PubMed  Google Scholar 

Hanna CW, Demond H, Kelsey G (2018) Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 24(5):556–576. https://doi.org/10.1093/humupd/dmy021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Gao Y, Liu W, Gao S (2022) Epigenetic regulation of cell fate transition: learning from early embryo development and somatic cell reprogramming†. Biol Reprod 107(1):183–195. https://doi.org/10.1093/biolre/ioac087

Article  PubMed  PubMed Central  Google Scholar 

Xu Q, Xie W (2018) Epigenome in early mammalian development: inheritance. Reprogramm Establ Trends Cell Biol 28(3):237–253. https://doi.org/10.1016/j.tcb.2017.10.008

Article  CAS  Google Scholar 

Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447(7143):425–432. https://doi.org/10.1038/nature05918

Article  CAS  PubMed  Google Scholar 

Kohan-Ghadr HR, Kadam L, Jain C, Armant DR, Drewlo S (2016) Potential role of epigenetic mechanisms in regulation of trophoblast differentiation, migration, and invasion in the human placenta. Cell Adh Migr 10(1–2):126–135. https://doi.org/10.1080/19336918.2015.1098800

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38. https://doi.org/10.1038/npp.2012.112

Article  CAS  PubMed  Google Scholar 

Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472):472–479. https://doi.org/10.1038/nature12750

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y et al (2014) The DNA methylation landscape of human early embryos. Nature 511(7511):606–610. https://doi.org/10.1038/nature13544

Article  CAS  PubMed  Google Scholar 

Zhou F, Wang R, Yuan P, Ren Y, Mao Y, Li R et al (2019) Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572(7771):660–664. https://doi.org/10.1038/s41586-019-1500-0

Article  CAS  PubMed  Google Scholar 

Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W et al (2008) Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 10(11):1280–1290. https://doi.org/10.1038/ncb1786

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cambuli F, Murray A, Dean W, Dudzinska D, Krueger F, Andrews S et al (2014) Epigenetic memory of the first cell fate decision prevents complete ES cell reprogramming into trophoblast. Nat Commun 5:5538. https://doi.org/10.1038/ncomms6538

Article  CAS  PubMed  Google Scholar 

Lee CQ, Gardner L, Turco M, Zhao N, Murray MJ, Coleman N et al (2016) What is trophoblast? A combination of criteria define human first-trimester trophoblast. Stem Cell Rep 6(2):257–272. https://doi.org/10.1016/j.stemcr.2016.01.006

Article  CAS  Google Scholar 

Krendl C, Shaposhnikov D, Rishko V, Ori C, Ziegenhain C, Sass S et al (2017) GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc Natl Acad Sci U S A 114(45):E9579-e9588. https://doi.org/10.1073/pnas.1708341114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee YL, Fong SW, Chen AC, Li T, Yue C, Lee CL et al (2015) Establishment of a novel human embryonic stem cell-derived trophoblastic spheroid implantation model. Hum Reprod 30(11):2614–2626. https://doi.org/10.1093/humrep/dev223

Article  CAS  PubMed  Google Scholar 

Yue C, Chen ACH, Tian S, Fong SW, Lee KC, Zhang J et al (2020) Human embryonic stem cell-derived blastocyst-like spheroids resemble human trophectoderm during early implantation process. Fertil Steril 114(3):653–664. https://doi.org/10.1016/j.fertnstert.2020.01.009

Article  CAS  PubMed  Google Scholar 

Lee YL, Ruan H, Lee KC, Fong SW, Yue C, Chen ACH et al (2023) Attachment of a trophoblastic spheroid onto endometrial epithelial cells predicts cumulative live birth in women aged 35 and older. Fertil Steril 120(2):268–276. https://doi.org/10.1016/j.fertnstert.2023.03.013

Article  PubMed  Google Scholar 

Chen ACH, Lee YL, Ruan H, Huang W, Fong SW, Tian S et al (2023) Expanded potential stem cells from human embryos have an open chromatin configuration with enhanced trophoblast differentiation ability. Adv Sci (Weinh) 10(11):e2204797. https://doi.org/10.1002/advs.202204797

Article  CAS  PubMed  Google Scholar 

Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K et al (2018) Derivation of human trophoblast stem cells. Cell Stem Cell 22(1):50-63.e6. https://doi.org/10.1016/j.stem.2017.11.004

Article  CAS  PubMed  Google Scholar 

Amita M, Adachi K, Alexenko AP, Sinha S, Schust DJ, Schulz LC et al (2013) Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci U S A 110(13):E1212–E1221. https://doi.org/10.1073/pnas.1303094110

Article  PubMed  PubMed Central 

Comments (0)

No login
gif