Blood flow restriction increases necessary muscle excitation of the elbow flexors during a single high-load contraction

Bandy WD, Hanten WP (1993) Changes in torque and electromyographic activity of the quadriceps femoris muscles following isometric training. Phys Ther 73(7):455–465. https://doi.org/10.1093/ptj/73.7.455

Article  CAS  PubMed  Google Scholar 

Bartuzi P, Tokarski T, Roman-Liu D (2010) The effect of the fatty tissue on EMG signal in young women. Acta Bioeng Biomech 12(2):87–92

PubMed  Google Scholar 

Behringer M, Heinke L, Leyendecker J, Mester J (2018) Effects of blood flow restriction during moderate-intensity eccentric knee extensions. J Physiol Sci 68(5):589–599. https://doi.org/10.1007/s12576-017-0568-2

Article  PubMed  Google Scholar 

Bell ZW, Buckner SL, Jessee MB, Mouser JG, Mattocks KT, Dankel SJ, Abe T, Loenneke JP (2018) Moderately heavy exercise produces lower cardiovascular, RPE, and discomfort compared to lower load exercise with and without blood flow restriction. Eur J Appl Physiol 118:1473–1480. https://doi.org/10.1007/s00421-018-3877-0

Article  PubMed  Google Scholar 

Berg H, Tedner B, Tesch P (1993) Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand 148(4):379–385. https://doi.org/10.1111/j.1748-1716.1993.tb09573.x

Article  CAS  PubMed  Google Scholar 

Bilodeau M, Arsenault AB, Gravel D, Bourbonnais D (1992) Influence of gender on the EMG power spectrum during an increasing force level. J Electromyogr Kinesiol 2(3):121–129. https://doi.org/10.1016/1050-6411(92)90009-8

Article  CAS  PubMed  Google Scholar 

Burke R (1978) Motor units: physiological/histochemical profiles, neural connectivity and functional specializations. Am Zool 18(1):127–134

Article  Google Scholar 

Burke R, Levine D, Tsairis P, Zajac Iii F (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234(3):723–748. https://doi.org/10.1113/jphysiol.1973.sp010369

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cayot TE, Lauver JD, Silette CR, Scheuermann BW (2016) Effects of blood flow restriction duration on muscle activation and microvascular oxygenation during low-volume isometric exercise. Clin Physiol Funct Imaging 36(4):298–305. https://doi.org/10.1111/cpf.12228

Article  CAS  PubMed  Google Scholar 

Centner C, Lauber B (2020) A systematic review and meta-analysis on neural adaptations following blood flow restriction training: what we know and what we don’t know. Front Physiol 11:887. https://doi.org/10.3389/fphys.2020.00887

Article  PubMed  PubMed Central  Google Scholar 

Clamann HP, Gillies JD, Henneman E (1974) Effects of inhibitory inputs on critical firing level and rank order of motoneurons. J Neurophysiol 37(6):1350–1360. https://doi.org/10.1152/jn.1974.37.6.1350

Article  CAS  PubMed  Google Scholar 

Contessa P, Luca CJD (2013) Neural control of muscle force: indications from a simulation model. J Neurophysiol 109(6):1548–1570. https://doi.org/10.1152/jn.00237.2012

Article  PubMed  Google Scholar 

de Brito Fontana H, Herzog W (2016) Vastus lateralis maximum force-generating potential occurs at optimal fascicle length regardless of activation level. Eur J Appl Physiol 116:1267–1277. https://doi.org/10.1007/s00421-016-3381-3

de Brito Fontana H, Han S-W, Sawatsky A, Herzog W (2018) The mechanics of agonistic muscles. J Biomech 79:15–20. https://doi.org/10.1016/j.jbiomech.2018.07.007

De Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13(2):135–163. https://doi.org/10.1123/jab.13.2.135

Article  Google Scholar 

De Luca CJ, Contessa P (2012) Hierarchical control of motor units in voluntary contractions. J Neurophysiol 107(1):178–195. https://doi.org/10.1152/jn.00961.2010

Article  PubMed  Google Scholar 

De Luca CJ, Contessa P (2015) Biomechanical benefits of the onion-skin motor unit control scheme. J Biomech 48(2):195–203. https://doi.org/10.1016/j.jbiomech.2014.12.003

Article  PubMed  Google Scholar 

De Luca CJ, Hostage EC (2010) Relationship between firing rate and recruitment threshold of motoneurons in voluntary isometric contractions. J Neurophysiol 104(2):1034–1046. https://doi.org/10.1152/jn.01018.2009

Article  PubMed  PubMed Central  Google Scholar 

De Luca C, Kline J (2011) Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons. J Neural Eng 9(1):016007. https://doi.org/10.1088/1741-2560/9/1/016007

Article  PubMed  PubMed Central  Google Scholar 

De Luca C, LeFever R, McCue M, Xenakis A (1982a) Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol 329(1):113–128. https://doi.org/10.1113/jphysiol.1982.sp014293

Article  PubMed  PubMed Central  Google Scholar 

De Luca C, LeFever R, McCue M, Xenakis A (1982b) Control scheme governing concurrently active human motor units during voluntary contractions. J Physiol 329(1):129–142. https://doi.org/10.1113/jphysiol.1982.sp014294

Article  PubMed  PubMed Central  Google Scholar 

De Ruiter C, De Boer M, Spanjaard M, De Haan A (2005) Knee angle-dependent oxygen consumption during isometric contractions of the knee extensors determined with near-infrared spectroscopy. J Appl Physiol 99(2):579–586. https://doi.org/10.1152/japplphysiol.01420.2004

Article  PubMed  Google Scholar 

Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D (2019) The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 597(7):1873–1887. https://doi.org/10.1113/JP277250

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dimmick HL, Miller JD, Sterczala AJ, Trevino MA, Herda TJ (2018) Vastus lateralis muscle tissue composition and motor unit properties in chronically endurance-trained vs sedentary women. Eur J Appl Physiol 118(9):1789–1800. https://doi.org/10.1007/s00421-018-3909-9

Article  PubMed  Google Scholar 

Diong J, Kishimoto KC, Butler JE, Héroux ME (2022) Muscle electromyographic activity normalized to maximal muscle activity, not to Mmax, better represents voluntary activation. PLoS ONE 17(11):e0277947. https://doi.org/10.1371/journal.pone.0277947

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96(4):1486–1495. https://doi.org/10.1152/japplphysiol.01070.2003

Article  PubMed  Google Scholar 

Farina D, Holobar A, Gazzoni M, Zazula D, Merletti R, Enoka RM (2009) Adjustments differ among low-threshold motor units during intermittent, isometric contractions. J Neurophysiol 101(1):350–359. https://doi.org/10.1152/jn.90968.2008

Article  PubMed  Google Scholar 

Farina D, Holobar A, Merletti R, Enoka RM (2010) Decoding the neural drive to muscles from the surface electromyogram. Clin Neurophysiol 121(10):1616–1623. https://doi.org/10.1016/j.clinph.2009.10.040

Article  PubMed  Google Scholar 

Farina D, Merletti R, Enoka RM (2014) The extraction of neural strategies from the surface EMG: an update. J Appl Physiol 117(11):1215–1230. https://doi.org/10.1152/japplphysiol.00162.2014

Article  PubMed  PubMed Central  Google Scholar 

Fatela P, Reis JF, Mendonca GV, Avela J, Mil-Homens P (2016) Acute effects of exercise under different levels of blood-flow restriction on muscle activation and fatigue. Eur J Appl Physiol 116:985–995. https://doi.org/10.1007/s00421-016-3359-1

Article  PubMed  Google Scholar 

Fatela P, Mendonca GV, Veloso AP, Avela J, Mil-Homens P (2019) Blood flow restriction alters motor unit behavior during resistance exercise. Int J Sports Med 40(09):555–562. https://doi.org/10.1055/a-0888-8816

Article  PubMed  Google Scholar 

Comments (0)

No login
gif