Immediate but not prolonged effects of submaximal eccentric vs concentric fatiguing protocols on the etiology of hamstrings’ motor performance fatigue

Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: Cellular mechanisms. Physiol Rev 88:287–332. https://doi.org/10.1152/physrev.00015.2007

Article  CAS  PubMed  Google Scholar 

Askling CM, Tengvar M, Thorstensson A (2013) Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med 47:953–959. https://doi.org/10.1136/bjsports-2013-092165

Article  PubMed  Google Scholar 

Baumert P, Temple S, Stanley JM et al (2021) Neuromuscular fatigue and recovery after strenuous exercise depends on skeletal muscle size and stem cell characteristics. Sci Rep 11:7733. https://doi.org/10.1038/s41598-021-87195-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behrens M, Mau-Moeller A, Bruhn S (2012) Effect of exercise-induced muscle damage on neuromuscular function of the quadriceps muscle. Int J Sports Med 33:600–606. https://doi.org/10.1055/s-0032-1304642

Article  CAS  PubMed  Google Scholar 

Behrens M, Gube M, Chaabene H et al (2023) Fatigue and human performance: an updated framework. Sports Med 53:7–31. https://doi.org/10.1007/s40279-022-01748-2

Article  PubMed  Google Scholar 

Brooks JHM (2005) Epidemiology of injuries in English professional rugby union: part 1 match injuries. Br J Sports Med 39:757–766. https://doi.org/10.1136/bjsm.2005.018135

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brownstein CG, Rimaud D, Singh B et al (2021) French translation and validation of the rating-of-fatigue scale. Sports Med - Open 7:25. https://doi.org/10.1186/s40798-021-00316-8

Article  PubMed  PubMed Central  Google Scholar 

Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Earlbaum Associates, Hillsdale

Google Scholar 

Chavarro-Nieto C, Beaven M, Gill N, Hébert-Losier K (2021) Hamstrings injury incidence, risk factors, and prevention in Rugby Union players: a systematic review. Phys Sportsmed. https://doi.org/10.1080/00913847.2021.1992601

Article  PubMed  Google Scholar 

Cheng A, Place N, Westerblad H (2018) Molecular basis for exercise-induced fatigue: the importance of strictly controlled cellular ca2+ handling. Cold Spring Harb Perspect Med 8(2):a029710. https://doi.org/10.1101/cshperspect.a029710

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chumanov ES, Heiderscheit BC, Thelen DG (2011) Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Med Sci Sports Exerc 43:525–532. https://doi.org/10.1249/MSS.0b013e3181f23fe8

Article  PubMed  PubMed Central  Google Scholar 

Corcelle B, Morin JB, Gerus P et al (2022) New field ergometer to reproducibly measure maximum strength and rate of force development of hamstrings. Sci Sports S0765159722000855. https://doi.org/10.1016/j.scispo.2022.03.005

Article  Google Scholar 

Da Silva F, Monjo F, Zghal F et al (2021) Altered position sense after submaximal eccentric exercise–inducing central fatigue. Med Sci Sports Exerc 53:218–227. https://doi.org/10.1249/MSS.0000000000002444

Article  CAS  PubMed  Google Scholar 

Dalton SL, Kerr ZY, Dompier TP (2015) Epidemiology of hamstring strains in 25 ncaa sports in the 2009–2010 to 2013–2014 academic years. Am J Sports Med 43:2671–2679. https://doi.org/10.1177/0363546515599631

Article  PubMed  Google Scholar 

Enoka RM, Duchateau J (2016) Translating fatigue to human performance. Med Sci Sports Exerc 48:2228–2238. https://doi.org/10.1249/MSS.0000000000000929

Article  PubMed  PubMed Central  Google Scholar 

Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. https://doi.org/10.1152/physrev.2001.81.4.1725

Article  PubMed  Google Scholar 

Giacomo J-P, Lahti J, Hegyi A et al (2018) A new testing and training device for hamstring muscle function.sport perform. Sci Rep 1:1–4

Google Scholar 

Hegyi A, Lahti J, Giacomo J-P et al (2019) Impact of hip flexion angle on unilateral and bilateral nordic hamstring exercise torque and high-density electromyography activity. J Orthop Sports Phys Ther 49:584–592. https://doi.org/10.2519/jospt.2019.8801

Article  PubMed  Google Scholar 

Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374. https://doi.org/10.1016/S1050-6411(00)00027-4

Article  CAS  PubMed  Google Scholar 

Huygaerts S, Cos F, Cohen DD et al (2020) Mechanisms of hamstring strain injury: interactions between fatigue. Muscle Activation Funct Sports 8:65. https://doi.org/10.3390/sports8050065

Article  Google Scholar 

Kenneally-Dabrowski C, Brown NAT, Warmenhoven J et al (2019) Late swing running mechanics influence hamstring injury susceptibility in elite rugby athletes: a prospective exploratory analysis. J Biomech 92:112–119. https://doi.org/10.1016/j.jbiomech.2019.05.037

Article  PubMed  Google Scholar 

Landis JR, Koch GG (1977) The Measurement of observer agreement for categorical data. Biometrics 33:159. https://doi.org/10.2307/2529310

Article  CAS  PubMed  Google Scholar 

Marshall PWM, Lovell R, Jeppesen GK et al (2014) Hamstring muscle fatigue and central motor output during a simulated soccer match. PLoS ONE 9:e102753. https://doi.org/10.1371/journal.pone.0102753

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin V, Millet GY, Martin A et al (2004) Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol 97:1923–1929. https://doi.org/10.1152/japplphysiol.00376.2004

Article  CAS  PubMed  Google Scholar 

Martin V, Dousset E, Laurin J et al (2009) Group III and IV muscle afferent discharge patterns after repeated lengthening and shortening actions. Muscle Nerve 40:827–837. https://doi.org/10.1002/mus.21368

Article  PubMed  Google Scholar 

Massamba A, Hucteau E, Mallard J et al (2022) Exercise induced fatigue in hamstring versus quadriceps muscles and consequences on the torque-duration relationship in men. Med Sci Sports Exerc Publ Ahead Pr. https://doi.org/10.1249/MSS.0000000000003007

Article  Google Scholar 

Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564. https://doi.org/10.1113/jphysiol.1954.sp005070

Article  CAS  PubMed  PubMed Central  Google Scholar 

Micklewright D, St Clair Gibson A, Gladwell V, Al Salman A (2017) Development and validity of the rating-of-fatigue scale. Sports Med 47:2375–2393. https://doi.org/10.1007/s40279-017-0711-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neyroud D, Vallotton A, Millet GY et al (2014) The effect of muscle fatigue on stimulus intensity requirements for central and peripheral fatigue quantification. Eur J Appl Physiol 114:205–215. https://doi.org/10.1007/s00421-013-2760-2

Article  PubMed  Google Scholar 

Piponnier E, Martin V, Bontemps B et al (2018) Child-adult differences in neuromuscular fatigue are muscle-dependent. J Appl Physiol. https://doi.org/10.1152/japplphysiol.00244.2018

Article  PubMed  Google Scholar 

Place N, Millet GY (2020) Quantification of neuromuscular fatigue: what do we do wrong and why? Sports Med 50:439–447. https://doi.org/10.1007/s40279-019-01203-9

Article 

Comments (0)

No login
gif