FBXO28 reduces high-fat diet-induced hyperlipidemia in mice by alleviating abnormal lipid metabolism and inflammatory responses

Karr S (2017) Epidemiology and management of hyperlipidemia. Am J Manag Care 23(9 Suppl):S139–S148

PubMed  Google Scholar 

Stewart J, McCallin T, Martinez J, Chacko S, Yusuf S (2020) Hyperlipidemia. Pediatr Rev 41(8):393–402

Article  PubMed  Google Scholar 

Bozzetto L, Della Pepa G, Vetrani C, Rivellese AA (2020) Dietary Impact on postprandial lipemia. Front Endocrinol (Lausanne) 11:337

Article  PubMed  Google Scholar 

Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al (2016) Heart disease and stroke statistics-2016 update: a report from the American heart association. Circulation 133(4):e38-360

PubMed  Google Scholar 

Bjornstad P, Eckel RH (2018) Pathogenesis of lipid disorders in insulin resistance: a brief review. Curr Diab Rep 18(12):127

Article  PubMed  PubMed Central  Google Scholar 

Kopin L, Lowenstein C (2010) In the clinic. dyslipidemia. Ann Intern Med. https://doi.org/10.7326/0003-4819-153-3-201008030-01002

Article  PubMed  Google Scholar 

Ye X, Kong W, Zafar MI, Chen LL (2019) Serum triglycerides as a risk factor for cardiovascular diseases in type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Cardiovasc Diabetol 18(1):48

Article  PubMed  PubMed Central  Google Scholar 

Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V (2019) Obesity and dyslipidemia. Metabolism 92:71–81

Article  CAS  PubMed  Google Scholar 

Zheng D, Dou J, Liu G, Pan Y, Yan Y, Liu F et al (2019) Association between triglyceride level and glycemic control among insulin-treated patients with type 2 diabetes. J Clin Endocrinol Metab 104(4):1211–1220

Article  PubMed  Google Scholar 

Tang Q, Gao L, Tong Z, Li W (2022) Hyperlipidemia, COVID-19 and acute pancreatitis: a tale of three entities. Am J Med Sci 364(3):257–263

Article  PubMed  PubMed Central  Google Scholar 

Johnson CB, Davis MK, Law A, Sulpher J (2016) Shared risk factors for cardiovascular disease and cancer: implications for preventive health and clinical care in oncology patients. Can J Cardiol 32(7):900–907

Article  PubMed  Google Scholar 

Séguro F, Bongard V, Bérard E, Taraszkiewicz D, Ruidavets JB, Ferrières J (2015) Dutch lipid clinic network low-density lipoprotein cholesterol criteria are associated with long-term mortality in the general population. Arch Cardiovasc Dis 108(10):511–518

Article  PubMed  Google Scholar 

Ferrières J (2019) Hypercholesterolaemia and coronary artery disease: A silent killer with several faces. Arch Cardiovasc Dis 112(2):75–78

Article  PubMed  Google Scholar 

Law MR, Wald NJ, Thompson SG (1994) By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ 308(6925):367–372

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG (1973) Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 52(7):1544–1568. https://doi.org/10.1172/JCI107332

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tietge UJ (2014) Hyperlipidemia and cardiovascular disease: inflammation, dyslipidemia, and atherosclerosis. Curr Opin Lipidol 25(1):94–95

Article  CAS  PubMed  Google Scholar 

Clarke MC, Talib S, Figg NL, Bennett MR (2010) Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res 106(2):363–372

Article  CAS  PubMed  Google Scholar 

Madjid M, Willerson JT (2011) Inflammatory markers in coronary heart disease. Br Med Bull 100:23–38

Article  CAS  PubMed  Google Scholar 

Kratz AS, Richter KT, Schlosser YT, Schmitt M, Shumilov A, Delecluse HJ et al (2016) Fbxo28 promotes mitotic progression and regulates topoisomerase IIα-dependent DNA decatenation. Cell Cycle 15(24):3419–3431

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cepeda D, Ng HF, Sharifi HR, Mahmoudi S, Cerrato VS, Fredlund E et al (2013) CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Mol Med 5(7):1067–1086

Article  PubMed  Google Scholar 

Cassina M, Rigon C, Casarin A, Vicenzi V, Salviati L, Clementi M (2015) FBXO28 is a critical gene of the 1q41q42 microdeletion syndrome. Am J Med Genet A 167(6):1418–1420

Article  CAS  PubMed  Google Scholar 

Papetti L, Schettini L, Garone G, Gennaro E, Malacarne M, Properzi E et al (2016) The crucial role of FBXO28 in the pathogenesis of the 1q41q42 microdeletion syndrome. Am J Med Genet A 170(11):3041–3042

Article  CAS  PubMed  Google Scholar 

Au PY, Argiropoulos B, Parboosingh JS, Micheil IA (2014) Refinement of the critical region of 1q41q42 microdeletion syndrome identifies FBXO28 as a candidate causative gene for intellectual disability and seizures. Am J Med Genet A 164(2):441–448. https://doi.org/10.1002/ajmg.a.36320

Article  CAS  Google Scholar 

Schneider AL, Myers CT, Muir AM, Calvert S, Basinger A, Perry MS et al (2021) FBXO28 causes developmental and epileptic encephalopathy with profound intellectual disability. Epilepsia 62(1):e13–e21

Article  CAS  PubMed  Google Scholar 

Zou JF, Wu XN, Shi RH, Sun YQ, Qin FJ, Yang YM (2020) Inhibition of microRNA-184 reduces H2O2-mediated cardiomyocyte injury via targeting FBXO28. Eur Rev Med Pharmacol Sci 24(21):11251–11258

PubMed  Google Scholar 

Gorrepati KDD, He W, Lupse B, Yuan T, Maedler K, Ardestani A (2018) An SCFFBXO28 E3 Ligase Protects Pancreatic β-Cells from Apoptosis. Int J Mol Sci. https://doi.org/10.3390/ijms19040975

Article  PubMed  PubMed Central  Google Scholar 

Liu S, Liu P, Zhu C, Yang R, He Z, Li Y et al (2023) FBXO28 promotes proliferation, invasion, and metastasis of pancreatic cancer cells through regulation of SMARCC2 ubiquitination. Aging (Albany NY) 15(12):5381–5398

CAS  PubMed  Google Scholar 

Phillips E, Balss J, Bethke F, Pusch S, Christen S, Hielscher T et al (2022) PFKFB4 interacts with FBXO28 to promote HIF-1α signaling in glioblastoma. Oncogenesis 11(1):57

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Liu Q, Cui M, Wang M, Hua S, Gao J et al (2021) Comprehensive analysis of expression, prognostic value, and Immune infiltration for ubiquitination-related FBXOS in pancreatic ductal adenocarcinoma. Front Immunol 12:774435

Article  CAS  PubMed  Google Scholar 

Liu Y, Pan B, Qu W, Cao Y, Li J, Zhao H (2021) Systematic analysis of the expression and prognosis relevance of FBXO family reveals the significance of FBXO1 in human breast cancer. Cancer Cell Int 21(1):130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu T, Wang L, Zhao C, Qian B, Yao C, He F et al (2019) Sublytic C5b–9 induces proliferation of glomerular mesangial cells via ERK5/MZF1/RGC-32 axis activated by FBXO28-TRAF6 complex. J Cell Mol Med 23(8):5654–5671

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boucher JM, Robich M, Scott SS, Yang X, Ryzhova L, Turner JE et al (2018) Rab27a regulates human perivascular adipose progenitor cell differentiation. Cardiovasc Drugs Ther 32(5):519–530

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. https://doi.org/10.2202/1544-6115.1027

Article  PubMed  Google Scholar 

National Research Council Committee for the Update of the Guide for the C, Use of Laboratory A. 2011 The National Academies Collection: Reports funded by National Institutes of Health. Guide for the Care and Use of Laboratory Animals. Washington (DC): National Academies Press (US) Copyright © 2011, National Academy of Sciences.

Liang Z, Zhang X, Liu Y, Wu Q, You C (2021) SEMA3A protects against hyperoxia-induced lung injury in a bronchopulmonary dysplasia model of newborn rat by inhibiting ERK pathway. Allergol Immunopathol (Madr) 49(6):8–15

Article  PubMed  Google Scholar 

Kang YM, Kang HA, Cominguez DC, Kim SH, An HJ (2021) Papain Ameliorates lipid accumulation and inflammation in high-fat diet-induced obesity mice and 3T3-L1 adipocytes via AMPK activation. Int J Mol Sci. https://doi.org/10.3390/ijms22189885

Article  PubMed  PubMed Central  Google Scholar 

Liu L, Ji X, Huang X (2022) Dexmedetomidine improves myocardial ischemia-reperfusion injury by increasing autophagy via PINK1/PRKN pathway. Signa Vitae 18(5):125–132

Google Scholar 

Manríquez-Olmos L, Garrocho-Rangel A, Pozos-Guillén A, Ortiz-Magdaleno M, Escobar-García DM (2022) Effect of tricalcium silicate cements in gene expression of COL1A1, MAPK’s, and NF-kB, and cell adhesion in primary teeth’ pulp fibroblasts. J Clin Pediatr Dent 46(6):17–24

Article  PubMed 

Comments (0)

No login
gif