Abbate A et al (2006) Myocardial expression of survivin, an apoptosis inhibitor, in aging and heart failure. An experimental study in the spontaneously hypertensive rat. Int J Cardiol 111(3):371–376
Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8(1):61–70
Article CAS PubMed Google Scholar
Altieri DC (2010) Survivin and IAP proteins in cell-death mechanisms. Biochem J 430(2):199–205
Article CAS PubMed Google Scholar
Aranda-Orgilles B et al (2016) MED12 regulates HSC-specific enhancers independently of mediator kinase activity to control hematopoiesis. Cell Stem Cell 19(6):784–799
Article CAS PubMed PubMed Central Google Scholar
Ashton NW et al (2013) Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol Biol 14(1):1–20
Ashwal-Fluss R et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66
Article CAS PubMed Google Scholar
Bansal N et al (2019) Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardio-Oncology 5:1–22
Baskin KK et al (2017) MED12 regulates a transcriptional network of calcium-handling genes in the heart. JCI Insight 2(14)
Bayoumi AS et al (2017) MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res 113(13):1603–1614
Article CAS PubMed PubMed Central Google Scholar
Bejarano L, Jordāo MJ, Joyce JA (2021) Therapeutic targeting of the tumor microenvironment. Cancer Discov 11(4):933–959
Article CAS PubMed Google Scholar
Benjamin EJ et al (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603
Article PubMed PubMed Central Google Scholar
Bernardo BC et al (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227
Article CAS PubMed Google Scholar
Bhambhani V et al (2018) Predictors and outcomes of heart failure with mid-range ejection fraction. Eur J Heart Fail 20(4):651–659
Article CAS PubMed Google Scholar
Boosani CS, Dhar K, Agrawal DK (2015) Down-regulation of hsa-miR-1264 contributes to DNMT1-mediated silencing of SOCS3. Mol Biol Rep 42(9):1365–1376
Article CAS PubMed PubMed Central Google Scholar
Brauch KM et al (2009) Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol 54(10):930–941
Article CAS PubMed PubMed Central Google Scholar
Brough D, Rothwell NJ (2007) Caspase-1-dependent processing of pro-interleukin-1β is cytosolic and precedes cell death. J Cell Sci 120(5):772–781
Article CAS PubMed Google Scholar
Burridge PW et al (2016) Human induced pluripotent stem cell–derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22(5):547–556
Article CAS PubMed PubMed Central Google Scholar
Busa VF, Leung AK (2021) Thrown for a (stem) loop: How RNA structure impacts circular RNA regulation and function. Methods 196:56–67
Article CAS PubMed Google Scholar
Cardiovascular Disease and Risk Management (2021) Standards of Medical Care in Diabetes-2021. Diab Care 44(Suppl 1): S125-s150
Chandrasekera DN et al (2020) Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis 25:388–399
Article CAS PubMed Google Scholar
Chen C et al (2020b) The Circular RNA CDR1as Regulates the Proliferation and Apoptosis of Human Cardiomyocytes Through the miR-135a/HMOX1 and miR-135b/HMOX1 Axes. Genet Test Mol Biomarkers 24(9):537–548
Article CAS PubMed Google Scholar
Chen C-K et al (2021) Structured elements drive extensive circular RNA translation. Mol Cell 81(20):4300–4318
Article CAS PubMed PubMed Central Google Scholar
Chen D et al (2022a) HMGCS2 silencing attenuates high glucose-induced in vitro diabetic cardiomyopathy by increasing cell viability, and inhibiting apoptosis, inflammation, and oxidative stress. Bioengineered 13(5):11417–11429
Article CAS PubMed PubMed Central Google Scholar
Chen Y et al (2020a) Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol 11:42
Article CAS PubMed PubMed Central Google Scholar
Chen Y et al (2022b) Identification of circular RNAs in cardiac hypertrophy and cardiac fibrosis. Front Pharmacol 13:940768
Article CAS PubMed PubMed Central Google Scholar
Chen Z et al (2018) MiR-33 promotes myocardial fibrosis by inhibiting MMP16 and stimulating p38 MAPK signaling. Oncotarget 9(31):22047
Article PubMed PubMed Central Google Scholar
Cheng S et al (2010) Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study. Circulation 122(6):570–578
Article PubMed PubMed Central Google Scholar
Cheng Y et al (2023) Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 14:1162754
Crone SA et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8(5):459–465
Article CAS PubMed Google Scholar
Cui M et al (2022) A narrative review of the research status of exosomes in cardiovascular disease. Ann Palliat Med 11(1):363–377
Dai D-F et al (2011) Mitochondrial oxidative stress mediates angiotensin II–induced cardiac hypertrophy and Gαq overexpression–induced heart failure. Circ Res 108(7):837–846
Article CAS PubMed PubMed Central Google Scholar
Dannenberg L et al (2021) Cellular mechanisms and recommended drug-based therapeutic options in diabetic cardiomyopathy. Pharmacol Ther 228:107920
Article CAS PubMed Google Scholar
Del Re DP et al (2014) Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Mol Cell 54(4):639–650
Article PubMed PubMed Central Google Scholar
Deng Y et al (2019) Circ-HIPK3 Strengthens the Effects of Adrenaline in Heart Failure by MiR-17-3p - ADCY6 Axis. Int J Biol Sci 15(11):2484–2496
Article CAS PubMed PubMed Central Google Scholar
Dohi T et al (2004) An IAP-IAP complex inhibits apoptosis. J Biol Chem 279(33):34087–34090
Article CAS PubMed Google Scholar
Dou YQ et al (2020) Smooth muscle SIRT1 reprograms endothelial cells to suppress angiogenesis after ischemia. Theranostics 10(3):1197–1212
Article CAS PubMed PubMed Central Google Scholar
Du WW et al (2021) A neuroligin isoform translated by circNlgn contributes to cardiac remodeling. Circ Res 129(5):568–582
Article CAS PubMed Google Scholar
Dunlay SM et al (2012) Longitudinal changes in ejection fraction in heart failure patients with preserved and reduced ejection fraction. Circ Heart Fail 5(6):720–726
Article PubMed PubMed Central Google Scholar
Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25(4):543–567
Article CAS PubMed Google Scholar
Feng, W. and S. Han, lncRNA ADAMTS9-AS1/circFN1 Competitively Binds to miR-206 to Elevate the Expression of ACTB, Thus Inducing Hypertrophic Cardiomyopathy. Oxidative Medicine and Cellular Longevity. 2022.
Feng Y et al (2021) Knockdown circ_0040414 inhibits inflammation, apoptosis and promotes the proliferation of cardiomyocytes via miR-186-5p/PTEN/AKT axis in chronic heart failure. Cell Biol Int 45(11):2304–2315
Comments (0)