More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure

UNAIDS. UNAIDS Global AIDS Update 2023. United Nations; 2023.

Newell ML, Coovadia H, Cortina-Borja M, Rollins N, Gaillard P, Dabis F, et al. Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. Lancet. 2004;364(9441):1236–43. https://doi.org/10.1016/S0140-6736(04)17140-7.

Article  PubMed  Google Scholar 

Richardson BA, Mbori-Ngacha D, Lavreys L, John-Stewart GC, Nduati R, Panteleeff DD, et al. Comparison of human immunodeficiency virus type 1 viral loads in Kenyan women, men, and infants during primary and early infection. J Virol. 2003;77(12):7120–3. https://doi.org/10.1128/jvi.77.12.7120-7123.2003.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shearer WT, Quinn TC, LaRussa P, Lew JF, Mofenson L, Almy S, et al. Viral load and disease progression in infants infected with human immunodeficiency virus type 1. Women and Infants Transmission Study Group. N Engl J Med. 1997;336(19):1337–42. https://doi.org/10.1056/NEJM199705083361901.

Article  PubMed  CAS  Google Scholar 

Patel K, Hernan MA, Williams PL, Seeger JD, McIntosh K, Van Dyke RB, et al. Long-term effectiveness of highly active antiretroviral therapy on the survival of children and adolescents with HIV infection: a 10-year follow-up study. Clin Infect Dis. 2008;46(4):507–15. https://doi.org/10.1086/526524.

Article  PubMed  Google Scholar 

Violari A, Cotton MF, Gibb DM, Babiker AG, Steyn J, Madhi SA, et al. Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med. 2008;359(21):2233–44. https://doi.org/10.1056/NEJMoa0800971.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fortuny C, Deya-Martinez A, Chiappini E, Galli L, de Martino M, Noguera-Julian A. Metabolic and renal adverse effects of antiretroviral therapy in HIV-infected children and adolescents. Pediatr Infect Dis J. 2015;34(5 Suppl 1):S36-43. https://doi.org/10.1097/INF.0000000000000663.

Article  PubMed  Google Scholar 

Frigati LJ, Ameyan W, Cotton MF, Gregson CL, Hoare J, Jao J, et al. Chronic comorbidities in children and adolescents with perinatally acquired HIV infection in sub-Saharan Africa in the era of antiretroviral therapy. Lancet Child Adolesc Health. 2020;4(9):688–98. https://doi.org/10.1016/S2352-4642(20)30037-7.

Article  PubMed  Google Scholar 

Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900. https://doi.org/10.1038/nm.1972.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387(6629):183–8. https://doi.org/10.1038/387183a0.

Article  ADS  PubMed  CAS  Google Scholar 

Brenchley JM, Hill BJ, Ambrozak DR, Price DA, Guenaga FJ, Casazza JP, et al. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J Virol. 2004;78(3):1160–8. https://doi.org/10.1128/jvi.78.3.1160-1168.2004.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Luzuriaga K, Tabak B, Garber M, Chen YH, Ziemniak C, McManus MM, et al. HIV type 1 (HIV-1) proviral reservoirs decay continuously under sustained virologic control in HIV-1-infected children who received early treatment. J Infect Dis. 2014;210(10):1529–38. https://doi.org/10.1093/infdis/jiu297.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jaafoura S, de Goer de Herve MG, Hernandez-Vargas EA, Hendel-Chavez H, Abdoh M, Mateo MC, et al. Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4(+) memory T Cells. Nat Commun. 2014;5:5407. https://doi.org/10.1038/ncomms6407.

Soriano-Sarabia N, Bateson RE, Dahl NP, Crooks AM, Kuruc JD, Margolis DM, et al. Quantitation of replication-competent HIV-1 in populations of resting CD4+ T cells. J Virol. 2014;88(24):14070–7. https://doi.org/10.1128/JVI.01900-14.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mavigner M, Habib J, Deleage C, Rosen E, Mattingly C, Bricker K, et al. Simian immunodeficiency virus persistence in cellular and anatomic reservoirs in antiretroviral therapy-suppressed infant rhesus macaques. J Virol. 2018;92(18). https://doi.org/10.1128/JVI.00562-18.

Obregon-Perko V, Bricker KM, Mensah G, Uddin F, Kumar MR, Fray EJ, et al. Simian-human immunodeficiency virus SHIV.C.CH505 persistence in ART-suppressed infant macaques is characterized by elevated SHIV RNA in the gut and a high abundance of intact SHIV DNA in naive CD4(+) T cells. J Virol. 2020;95(2). https://doi.org/10.1128/JVI.01669-20.

Katusiime MG, Guo S, Neer V, Patro SC, Wu X, Horner A, et al. Infected naive CD4+ T cells in children with HIV can proliferate and persist on ART. CROI-Conference on Retroviruses and Opportunistic Infections Seattle, WA, United States. 2023.

Dhummakupt A, Rubens JH, Anderson T, Powell L, Nonyane BA, Siems LV, et al. Differences in inducibility of the latent HIV reservoir in perinatal and adult infection. JCI Insight. 2020;5(4). https://doi.org/10.1172/jci.insight.134105.

Garcia-Broncano P, Maddali S, Einkauf KB, Jiang C, Gao C, Chevalier J, et al. Early antiretroviral therapy in neonates with HIV-1 infection restricts viral reservoir size and induces a distinct innate immune profile. Sci Transl Med. 2019;11(520). https://doi.org/10.1126/scitranslmed.aax7350.

Foster C, Dominguez-Rodriguez S, Tagarro A, Gkouleli T, Heaney J, Watters S, et al. The CARMA study: early infant antiretroviral therapy-timing impacts on total HIV-1 DNA quantitation 12 years later. J Pediatric Infect Dis Soc. 2021;10(3):295–301. https://doi.org/10.1093/jpids/piaa071.

Article  PubMed  CAS  Google Scholar 

Luzuriaga K, McManus M, Catalina M, Mayack S, Sharkey M, Stevenson M, et al. Early therapy of vertical human immunodeficiency virus type 1 (HIV-1) infection: control of viral replication and absence of persistent HIV-1-specific immune responses. J Virol. 2000;74(15):6984–91. https://doi.org/10.1128/jvi.74.15.6984-6991.2000.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ananworanich J, Puthanakit T, Suntarattiwong P, Chokephaibulkit K, Kerr SJ, Fromentin R, et al. Reduced markers of HIV persistence and restricted HIV-specific immune responses after early antiretroviral therapy in children. AIDS. 2014;28(7):1015–20. https://doi.org/10.1097/QAD.0000000000000178.

Article  PubMed  CAS  Google Scholar 

Persaud D, Patel K, Karalius B, Rainwater-Lovett K, Ziemniak C, Ellis A, et al. Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents. JAMA Pediatr. 2014;168(12):1138–46. https://doi.org/10.1001/jamapediatrics.2014.1560.

Article  PubMed  PubMed Central  Google Scholar 

Veazey RS, Lackner AA. Nonhuman primate models and understanding the pathogenesis of HIV infection and AIDS. ILAR J. 2017;58(2):160–71. https://doi.org/10.1093/ilar/ilx032.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lo B, Grady C, Working Group on Ethics of the International AS. Ethical considerations in HIV cure research: points to consider. Curr Opin HIV AIDS. 2013;8(3):243–9. https://doi.org/10.1097/COH.0b013e32835ea1c5.

Article  PubMed  PubMed Central  Google Scholar 

Del Prete GQ, Lifson JD. Nonhuman primate models for studies of AIDS virus persistence during suppressive combination antiretroviral therapy. Curr Top Microbiol Immunol. 2018;417:69–109. https://doi.org/10.1007/82_2017_73.

Article  PubMed  CAS  Google Scholar 

Nixon CC, Mavigner M, Silvestri G, Garcia JV. In vivo models of human immunodeficiency virus persistence and cure strategies. J Infect Dis. 2017;215(3):S142–51. https://doi.org/10.1093/infdis/jiw637.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Anderson J. A million monkeys and Shakespeare. Significance. 2011;8(4):190–2. https://doi.org/10.1111/j.1740-9713.2011.00533.x.

Article  Google Scholar 

Prendergast AJ, Klenerman P, Goulder PJ. The impact of differential antiviral immunity in children and adults. Nat Rev Immunol. 2012;12(9):636–48. https://doi.org/10.1038/nri3277.

Article  PubMed  CAS  Google Scholar 

Goulder PJ, Lewin SR, Leitman EM. Paediatric HIV infection: the potential for cure. Nat Rev Immunol. 2016;16(4):259–71. https://doi.org/10.1038/nri.2016.19.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Muenchhoff M, Prendergast AJ, Goulder PJ. Immunity to HIV in early life. Front Immunol. 2014;5:391. https://doi.org/10.3389/fimmu.2014.00391.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Berendam SJ, Nelson AN, Yagnik B, Goswami R, Styles TM, Neja MA, et al. Challenges and opportunities of therapies targeting early life immunity for pediatric HIV cure. Front Immunol. 2022;13:885272. https://doi.org/10.3389/fimmu.2022.885272.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tobin NH, Aldrovandi GM. Immunology of pediatric HIV infection. Immunol Rev. 2013;254(1):143–69. https://doi.org/10.1111/imr.12074.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Basha S, Surendran N, Pichichero M. Immune responses in neonates. Expert Rev Clin Immunol. 2014;10(9):1171–84. https://doi.org/10.1586/1744666X.2014.942288.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F, Wang XY, et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol. 2009;183(11):7150–60. https://doi.org/10.4049/jimmunol.0901481.

Article  PubMed  CAS  Google Scholar 

Tsafaras GP, Ntontsi P, Xanthou G. Advantages and limitations of the neonatal immune system. Front Pediatr. 2020;8:5. https://doi.org/10.3389/fped.2020.00005.

Article  PubMed  PubMed Central  Google Scholar 

Selvaraj A, Pilakka-Kant

Comments (0)

No login
gif