UNAIDS. UNAIDS Global AIDS Update 2023. United Nations; 2023.
Newell ML, Coovadia H, Cortina-Borja M, Rollins N, Gaillard P, Dabis F, et al. Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. Lancet. 2004;364(9441):1236–43. https://doi.org/10.1016/S0140-6736(04)17140-7.
Richardson BA, Mbori-Ngacha D, Lavreys L, John-Stewart GC, Nduati R, Panteleeff DD, et al. Comparison of human immunodeficiency virus type 1 viral loads in Kenyan women, men, and infants during primary and early infection. J Virol. 2003;77(12):7120–3. https://doi.org/10.1128/jvi.77.12.7120-7123.2003.
Article PubMed PubMed Central CAS Google Scholar
Shearer WT, Quinn TC, LaRussa P, Lew JF, Mofenson L, Almy S, et al. Viral load and disease progression in infants infected with human immunodeficiency virus type 1. Women and Infants Transmission Study Group. N Engl J Med. 1997;336(19):1337–42. https://doi.org/10.1056/NEJM199705083361901.
Article PubMed CAS Google Scholar
Patel K, Hernan MA, Williams PL, Seeger JD, McIntosh K, Van Dyke RB, et al. Long-term effectiveness of highly active antiretroviral therapy on the survival of children and adolescents with HIV infection: a 10-year follow-up study. Clin Infect Dis. 2008;46(4):507–15. https://doi.org/10.1086/526524.
Violari A, Cotton MF, Gibb DM, Babiker AG, Steyn J, Madhi SA, et al. Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med. 2008;359(21):2233–44. https://doi.org/10.1056/NEJMoa0800971.
Article PubMed PubMed Central CAS Google Scholar
Fortuny C, Deya-Martinez A, Chiappini E, Galli L, de Martino M, Noguera-Julian A. Metabolic and renal adverse effects of antiretroviral therapy in HIV-infected children and adolescents. Pediatr Infect Dis J. 2015;34(5 Suppl 1):S36-43. https://doi.org/10.1097/INF.0000000000000663.
Frigati LJ, Ameyan W, Cotton MF, Gregson CL, Hoare J, Jao J, et al. Chronic comorbidities in children and adolescents with perinatally acquired HIV infection in sub-Saharan Africa in the era of antiretroviral therapy. Lancet Child Adolesc Health. 2020;4(9):688–98. https://doi.org/10.1016/S2352-4642(20)30037-7.
Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900. https://doi.org/10.1038/nm.1972.
Article PubMed PubMed Central CAS Google Scholar
Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387(6629):183–8. https://doi.org/10.1038/387183a0.
Article ADS PubMed CAS Google Scholar
Brenchley JM, Hill BJ, Ambrozak DR, Price DA, Guenaga FJ, Casazza JP, et al. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J Virol. 2004;78(3):1160–8. https://doi.org/10.1128/jvi.78.3.1160-1168.2004.
Article PubMed PubMed Central CAS Google Scholar
Luzuriaga K, Tabak B, Garber M, Chen YH, Ziemniak C, McManus MM, et al. HIV type 1 (HIV-1) proviral reservoirs decay continuously under sustained virologic control in HIV-1-infected children who received early treatment. J Infect Dis. 2014;210(10):1529–38. https://doi.org/10.1093/infdis/jiu297.
Article PubMed PubMed Central CAS Google Scholar
Jaafoura S, de Goer de Herve MG, Hernandez-Vargas EA, Hendel-Chavez H, Abdoh M, Mateo MC, et al. Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4(+) memory T Cells. Nat Commun. 2014;5:5407. https://doi.org/10.1038/ncomms6407.
Soriano-Sarabia N, Bateson RE, Dahl NP, Crooks AM, Kuruc JD, Margolis DM, et al. Quantitation of replication-competent HIV-1 in populations of resting CD4+ T cells. J Virol. 2014;88(24):14070–7. https://doi.org/10.1128/JVI.01900-14.
Article PubMed PubMed Central CAS Google Scholar
Mavigner M, Habib J, Deleage C, Rosen E, Mattingly C, Bricker K, et al. Simian immunodeficiency virus persistence in cellular and anatomic reservoirs in antiretroviral therapy-suppressed infant rhesus macaques. J Virol. 2018;92(18). https://doi.org/10.1128/JVI.00562-18.
Obregon-Perko V, Bricker KM, Mensah G, Uddin F, Kumar MR, Fray EJ, et al. Simian-human immunodeficiency virus SHIV.C.CH505 persistence in ART-suppressed infant macaques is characterized by elevated SHIV RNA in the gut and a high abundance of intact SHIV DNA in naive CD4(+) T cells. J Virol. 2020;95(2). https://doi.org/10.1128/JVI.01669-20.
Katusiime MG, Guo S, Neer V, Patro SC, Wu X, Horner A, et al. Infected naive CD4+ T cells in children with HIV can proliferate and persist on ART. CROI-Conference on Retroviruses and Opportunistic Infections Seattle, WA, United States. 2023.
Dhummakupt A, Rubens JH, Anderson T, Powell L, Nonyane BA, Siems LV, et al. Differences in inducibility of the latent HIV reservoir in perinatal and adult infection. JCI Insight. 2020;5(4). https://doi.org/10.1172/jci.insight.134105.
Garcia-Broncano P, Maddali S, Einkauf KB, Jiang C, Gao C, Chevalier J, et al. Early antiretroviral therapy in neonates with HIV-1 infection restricts viral reservoir size and induces a distinct innate immune profile. Sci Transl Med. 2019;11(520). https://doi.org/10.1126/scitranslmed.aax7350.
Foster C, Dominguez-Rodriguez S, Tagarro A, Gkouleli T, Heaney J, Watters S, et al. The CARMA study: early infant antiretroviral therapy-timing impacts on total HIV-1 DNA quantitation 12 years later. J Pediatric Infect Dis Soc. 2021;10(3):295–301. https://doi.org/10.1093/jpids/piaa071.
Article PubMed CAS Google Scholar
Luzuriaga K, McManus M, Catalina M, Mayack S, Sharkey M, Stevenson M, et al. Early therapy of vertical human immunodeficiency virus type 1 (HIV-1) infection: control of viral replication and absence of persistent HIV-1-specific immune responses. J Virol. 2000;74(15):6984–91. https://doi.org/10.1128/jvi.74.15.6984-6991.2000.
Article PubMed PubMed Central CAS Google Scholar
Ananworanich J, Puthanakit T, Suntarattiwong P, Chokephaibulkit K, Kerr SJ, Fromentin R, et al. Reduced markers of HIV persistence and restricted HIV-specific immune responses after early antiretroviral therapy in children. AIDS. 2014;28(7):1015–20. https://doi.org/10.1097/QAD.0000000000000178.
Article PubMed CAS Google Scholar
Persaud D, Patel K, Karalius B, Rainwater-Lovett K, Ziemniak C, Ellis A, et al. Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents. JAMA Pediatr. 2014;168(12):1138–46. https://doi.org/10.1001/jamapediatrics.2014.1560.
Article PubMed PubMed Central Google Scholar
Veazey RS, Lackner AA. Nonhuman primate models and understanding the pathogenesis of HIV infection and AIDS. ILAR J. 2017;58(2):160–71. https://doi.org/10.1093/ilar/ilx032.
Article PubMed PubMed Central CAS Google Scholar
Lo B, Grady C, Working Group on Ethics of the International AS. Ethical considerations in HIV cure research: points to consider. Curr Opin HIV AIDS. 2013;8(3):243–9. https://doi.org/10.1097/COH.0b013e32835ea1c5.
Article PubMed PubMed Central Google Scholar
Del Prete GQ, Lifson JD. Nonhuman primate models for studies of AIDS virus persistence during suppressive combination antiretroviral therapy. Curr Top Microbiol Immunol. 2018;417:69–109. https://doi.org/10.1007/82_2017_73.
Article PubMed CAS Google Scholar
Nixon CC, Mavigner M, Silvestri G, Garcia JV. In vivo models of human immunodeficiency virus persistence and cure strategies. J Infect Dis. 2017;215(3):S142–51. https://doi.org/10.1093/infdis/jiw637.
Article PubMed PubMed Central CAS Google Scholar
Anderson J. A million monkeys and Shakespeare. Significance. 2011;8(4):190–2. https://doi.org/10.1111/j.1740-9713.2011.00533.x.
Prendergast AJ, Klenerman P, Goulder PJ. The impact of differential antiviral immunity in children and adults. Nat Rev Immunol. 2012;12(9):636–48. https://doi.org/10.1038/nri3277.
Article PubMed CAS Google Scholar
Goulder PJ, Lewin SR, Leitman EM. Paediatric HIV infection: the potential for cure. Nat Rev Immunol. 2016;16(4):259–71. https://doi.org/10.1038/nri.2016.19.
Article PubMed PubMed Central CAS Google Scholar
Muenchhoff M, Prendergast AJ, Goulder PJ. Immunity to HIV in early life. Front Immunol. 2014;5:391. https://doi.org/10.3389/fimmu.2014.00391.
Article PubMed PubMed Central CAS Google Scholar
Berendam SJ, Nelson AN, Yagnik B, Goswami R, Styles TM, Neja MA, et al. Challenges and opportunities of therapies targeting early life immunity for pediatric HIV cure. Front Immunol. 2022;13:885272. https://doi.org/10.3389/fimmu.2022.885272.
Article PubMed PubMed Central CAS Google Scholar
Tobin NH, Aldrovandi GM. Immunology of pediatric HIV infection. Immunol Rev. 2013;254(1):143–69. https://doi.org/10.1111/imr.12074.
Article PubMed PubMed Central CAS Google Scholar
Basha S, Surendran N, Pichichero M. Immune responses in neonates. Expert Rev Clin Immunol. 2014;10(9):1171–84. https://doi.org/10.1586/1744666X.2014.942288.
Article PubMed PubMed Central CAS Google Scholar
Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F, Wang XY, et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol. 2009;183(11):7150–60. https://doi.org/10.4049/jimmunol.0901481.
Article PubMed CAS Google Scholar
Tsafaras GP, Ntontsi P, Xanthou G. Advantages and limitations of the neonatal immune system. Front Pediatr. 2020;8:5. https://doi.org/10.3389/fped.2020.00005.
Article PubMed PubMed Central Google Scholar
Selvaraj A, Pilakka-Kant
Comments (0)