Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases

Erkkinen, M. G., Kim, M. O. & Geschwind, M. D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 10, a033118 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139, 1551–1567 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

Article  CAS  PubMed  Google Scholar 

Whitehouse, P. J. et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

Article  CAS  PubMed  Google Scholar 

Tomlinson, B. E., Irving, D. & Blessed, G. Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J. Neurol. Sci. 49, 419–428 (1981).

Article  CAS  PubMed  Google Scholar 

Bondareff, W., Mountjoy, C. Q. & Roth, M. Selective loss of neurones of origin of adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet 1, 783–784 (1981).

Article  CAS  PubMed  Google Scholar 

Davies, P. & Maloney, A. J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2, 1403 (1976).

Article  CAS  PubMed  Google Scholar 

Adolfsson, R., Gottfries, C. G., Roos, B. E. & Winblad, B. Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br. J. Psychiatry 135, 216–223 (1979).

Article  CAS  PubMed  Google Scholar 

Hyman, B. T., Van Hoesen, G. W., Damasio, A. R. & Barnes, C. L. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984).

Article  CAS  PubMed  Google Scholar 

Gomez-Isla, T. et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16, 4491–4500 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morrison, J. H. et al. A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer’s disease. Brain Res. 416, 331–336 (1987).

Article  CAS  PubMed  Google Scholar 

Chin, J. et al. Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J. Neurosci. 27, 2727–2733 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwamoto, N. & Emson, P. C. Demonstration of neurofibrillary tangles in parvalbumin-immunoreactive interneurones in the cerebral cortex of Alzheimer-type dementia brain. Neurosci. Lett. 128, 81–84 (1991).

Article  CAS  PubMed  Google Scholar 

Hof, P. R. et al. Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 50, 451–462 (1991).

Article  CAS  PubMed  Google Scholar 

Hof, P. R., Nimchinsky, E. A., Celio, M. R., Bouras, C. & Morrison, J. H. Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci. Lett. 152, 145–148 (1993).

Article  CAS  PubMed  Google Scholar 

Sampson, V. L., Morrison, J. H. & Vickers, J. C. The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer’s disease. Exp. Neurol. 145, 295–302 (1997).

Article  CAS  PubMed  Google Scholar 

Hof, P. R. & Morrison, J. H. Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp. Neurol. 111, 293–301 (1991).

Article  CAS  PubMed  Google Scholar 

Mikkonen, M., Alafuzoff, I., Tapiola, T., Soininen, H. & Miettinen, R. Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer’s disease. Neuroscience 92, 515–532 (1999).

Article  CAS  PubMed  Google Scholar 

Brion, J. P. & Résibois, A. A subset of calretinin-positive neurons are abnormal in Alzheimer’s disease. Acta Neuropathol. 88, 33–43 (1994).

Article  CAS  PubMed  Google Scholar 

Davies, P., Katzman, R. & Terry, R. D. Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature 288, 279–280 (1980).

Article  CAS  PubMed  Google Scholar 

Morrison, J. H., Rogers, J., Scherr, S., Benoit, R. & Bloom, F. E. Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients. Nature 314, 90–92 (1985).

Article  CAS  PubMed  Google Scholar 

Leng, K. et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 24, 276–287 (2021). A paper that shows the application of snRNA-seq in human tissue to define the transcriptomes of selectively vulnerable neurons in a neurodegenerative disease, specifically in entorhinal cortex in AD.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gazestani, V. et al. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell 186, 4438–4453.e23 (2023). A paper that demonstrates that snRNA-seq from human brain biopsies defines early vulnerable cell types and transcriptomic changes in AD.

Article  CAS  PubMed  Google Scholar 

Jorstad, N. L. et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 (2023).

Article  CAS  PubMed  Google Scholar 

Gabitto, M. et al. Integrated multimodal cell atlas of Alzheimer’s disease. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2921860/v1 (2023).

Cain, A. et al. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease. Nat. Neurosci. 26, 1267–1280 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Consens, M. E. et al. Bulk and single-nucleus transcriptomics highlight intra-telencephalic and somatostatin neurons in Alzheimer’s disease. Front. Mol. Neurosci. 15, 903175 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 186, 4365–4385.e27 (2023).

Article  CAS  PubMed  Google Scholar 

Marinaro, F. et al. Molecular and cellular pathology of monogenic Alzheimer’s disease at single cell resolution. Preprint at bioRxiv https://doi.org/10.1101/2020.07.14.202317 (2020).

Vöglein, J. et al. Seizures as an early symptom of autosomal dominant Alzheimer’s disease. Neurobiol. Aging 76, 18–23 (2019).

Article  PubMed  Google Scholar 

Zarea, A. et al. Seizures in dominantly inherited Alzheimer disease. Neurology 87, 912–919 (2016).

Article  PubMed  Google Scholar 

Otero-Garcia, M. et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron 110, 2929–2948.e8 (2022). A paper showing that the transcriptomic characterization of single neuronal cell bodies with and without tau pathology from human AD brains defines neuronal subtypes vulnerable to neurofibrillary tangle accumulation.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewy, F. H. in Handbuch der Neurologie, 3 Band: Spez Neurologie II (ed. Lewandowsky, M.) 920–933 (Springer, 1912).

Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

Article  CAS  PubMed  Google Scholar 

Dijkstra, A. A. et al. Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson’s disease. Mov. Disord. 29, 1244–1251 (2014).

Article  PubMed  Google Scholar 

Tretiakoff, C. Contribution a l’Etude de l’Anatomie Pathologique du Locus Niger de Soemmering avec Quelques Deduction Relatives a la Pathogenie des Troubles du Tonus Musculaire et de la Maladie de Parkinson (Jouve, 1919).

Hirsch, E., Graybiel, A. M. & Agid, Y. A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334, 345–348 (1988).

Article  CAS  PubMed  Google Scholar 

Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122, 1437–1448 (1999).

Article  PubMed  Google Scholar 

Fearnley, J. M. & Lees, A. J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).

Article 

Comments (0)

No login
gif