Erkkinen, M. G., Kim, M. O. & Geschwind, M. D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 10, a033118 (2018).
Article PubMed PubMed Central Google Scholar
Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139, 1551–1567 (2016).
Article PubMed PubMed Central Google Scholar
Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).
Article CAS PubMed Google Scholar
Whitehouse, P. J. et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).
Article CAS PubMed Google Scholar
Tomlinson, B. E., Irving, D. & Blessed, G. Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J. Neurol. Sci. 49, 419–428 (1981).
Article CAS PubMed Google Scholar
Bondareff, W., Mountjoy, C. Q. & Roth, M. Selective loss of neurones of origin of adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet 1, 783–784 (1981).
Article CAS PubMed Google Scholar
Davies, P. & Maloney, A. J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2, 1403 (1976).
Article CAS PubMed Google Scholar
Adolfsson, R., Gottfries, C. G., Roos, B. E. & Winblad, B. Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br. J. Psychiatry 135, 216–223 (1979).
Article CAS PubMed Google Scholar
Hyman, B. T., Van Hoesen, G. W., Damasio, A. R. & Barnes, C. L. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984).
Article CAS PubMed Google Scholar
Gomez-Isla, T. et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16, 4491–4500 (1996).
Article CAS PubMed PubMed Central Google Scholar
Morrison, J. H. et al. A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer’s disease. Brain Res. 416, 331–336 (1987).
Article CAS PubMed Google Scholar
Chin, J. et al. Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J. Neurosci. 27, 2727–2733 (2007).
Article CAS PubMed PubMed Central Google Scholar
Iwamoto, N. & Emson, P. C. Demonstration of neurofibrillary tangles in parvalbumin-immunoreactive interneurones in the cerebral cortex of Alzheimer-type dementia brain. Neurosci. Lett. 128, 81–84 (1991).
Article CAS PubMed Google Scholar
Hof, P. R. et al. Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 50, 451–462 (1991).
Article CAS PubMed Google Scholar
Hof, P. R., Nimchinsky, E. A., Celio, M. R., Bouras, C. & Morrison, J. H. Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci. Lett. 152, 145–148 (1993).
Article CAS PubMed Google Scholar
Sampson, V. L., Morrison, J. H. & Vickers, J. C. The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer’s disease. Exp. Neurol. 145, 295–302 (1997).
Article CAS PubMed Google Scholar
Hof, P. R. & Morrison, J. H. Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp. Neurol. 111, 293–301 (1991).
Article CAS PubMed Google Scholar
Mikkonen, M., Alafuzoff, I., Tapiola, T., Soininen, H. & Miettinen, R. Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer’s disease. Neuroscience 92, 515–532 (1999).
Article CAS PubMed Google Scholar
Brion, J. P. & Résibois, A. A subset of calretinin-positive neurons are abnormal in Alzheimer’s disease. Acta Neuropathol. 88, 33–43 (1994).
Article CAS PubMed Google Scholar
Davies, P., Katzman, R. & Terry, R. D. Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature 288, 279–280 (1980).
Article CAS PubMed Google Scholar
Morrison, J. H., Rogers, J., Scherr, S., Benoit, R. & Bloom, F. E. Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients. Nature 314, 90–92 (1985).
Article CAS PubMed Google Scholar
Leng, K. et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 24, 276–287 (2021). A paper that shows the application of snRNA-seq in human tissue to define the transcriptomes of selectively vulnerable neurons in a neurodegenerative disease, specifically in entorhinal cortex in AD.
Article CAS PubMed PubMed Central Google Scholar
Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).
Article CAS PubMed PubMed Central Google Scholar
Gazestani, V. et al. Early Alzheimer’s disease pathology in human cortex involves transient cell states. Cell 186, 4438–4453.e23 (2023). A paper that demonstrates that snRNA-seq from human brain biopsies defines early vulnerable cell types and transcriptomic changes in AD.
Article CAS PubMed Google Scholar
Jorstad, N. L. et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 (2023).
Article CAS PubMed Google Scholar
Gabitto, M. et al. Integrated multimodal cell atlas of Alzheimer’s disease. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2921860/v1 (2023).
Cain, A. et al. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease. Nat. Neurosci. 26, 1267–1280 (2023).
Article CAS PubMed PubMed Central Google Scholar
Consens, M. E. et al. Bulk and single-nucleus transcriptomics highlight intra-telencephalic and somatostatin neurons in Alzheimer’s disease. Front. Mol. Neurosci. 15, 903175 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 186, 4365–4385.e27 (2023).
Article CAS PubMed Google Scholar
Marinaro, F. et al. Molecular and cellular pathology of monogenic Alzheimer’s disease at single cell resolution. Preprint at bioRxiv https://doi.org/10.1101/2020.07.14.202317 (2020).
Vöglein, J. et al. Seizures as an early symptom of autosomal dominant Alzheimer’s disease. Neurobiol. Aging 76, 18–23 (2019).
Zarea, A. et al. Seizures in dominantly inherited Alzheimer disease. Neurology 87, 912–919 (2016).
Otero-Garcia, M. et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron 110, 2929–2948.e8 (2022). A paper showing that the transcriptomic characterization of single neuronal cell bodies with and without tau pathology from human AD brains defines neuronal subtypes vulnerable to neurofibrillary tangle accumulation.
Article CAS PubMed PubMed Central Google Scholar
Lewy, F. H. in Handbuch der Neurologie, 3 Band: Spez Neurologie II (ed. Lewandowsky, M.) 920–933 (Springer, 1912).
Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).
Article CAS PubMed Google Scholar
Dijkstra, A. A. et al. Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson’s disease. Mov. Disord. 29, 1244–1251 (2014).
Tretiakoff, C. Contribution a l’Etude de l’Anatomie Pathologique du Locus Niger de Soemmering avec Quelques Deduction Relatives a la Pathogenie des Troubles du Tonus Musculaire et de la Maladie de Parkinson (Jouve, 1919).
Hirsch, E., Graybiel, A. M. & Agid, Y. A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334, 345–348 (1988).
Article CAS PubMed Google Scholar
Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122, 1437–1448 (1999).
Fearnley, J. M. & Lees, A. J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).
Comments (0)