Yang Y, Carbonell J, Brown R, Lafferty J, Pierce T, Ault T. Multi-strategy learning for topic detection and tracking. In: Topic Detection and Tracking. Springer; 2002. p. 85–114.
Zhou D, Xu H, He Y. An unsupervised Bayesian modelling approach for storyline detection on news articles. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015. p. 1943–8.
Brüggermann D, Hermey Y, Orth C, Schneider D, Selzer S, Spanakis G. Storyline detection and tracking using dynamic latent Dirichlet allocation. In: Proceedings of the 2nd Workshop on Computing News Storylines (CNS 2016). 2016. p. 9–19.
Robertson S, Zaragoza H, et al. The probabilistic relevance framework: BM25 and beyond. Found Trends® Inf Ret. 2009;3(4):333–389.
Blei DM, Ng AY, Jordan MI. Latent Dirichlet allocation. J Mach Learn Res. 2003;3(Jan):993–1022.
Huang P-S, He X, Gao J, Deng L, Acero A, Heck L. Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. ACM; 2013. p. 2333–8.
Shen Y, He X, Gao J, Deng L, Mesnil G. Learning semantic representations using convolutional neural networks for web search. In: Proceedings of the 23rd International Conference on World Wide Web. ACM; 2014. p. 373–4.
Mitra B, Diaz F, Craswell N. Learning to match using local and distributed representations of text for web search. In: Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee; 2017. p. 1291–9.
Qiu X, Huang X. Convolutional neural tensor network architecture for community-based question answering. In: Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015.
Wan S, Lan Y, Guo J, Xu J, Pang L, Cheng X. A deep architecture for semantic matching with multiple positional sentence representations. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016.
Mueller J, Thyagarajan A. Siamese recurrent architectures for learning sentence similarity. In Thirtieth AAAI Conference on Artificial Intelligence. 2016.
Hu B, Lu Z, Li H, Chen Q. Convolutional neural network architectures for matching natural language sentences. In: Advances in Neural Information Processing Systems. 2014. p. 2042–50.
Pang L, Lan Y, Guo J, Xu J, Wan S, Cheng X. Text matching as image recognition. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016.
Wang Z, Hamza W, Florian R. Bilateral multi-perspective matching for natural language sentences. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. 2017. p. 4144–50.
Chen H, Han FX, Niu D, Liu D, Lai K, Wu C, Xu Y. Mix: Multi-channel information crossing for text matching. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM; 2018. p. 110–9.
Gong Y, Luo H, Zhang J. Natural language inference over interaction space. In: International Conference on Learning Representations. 2018.
Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR). 2017.
Yanyan Z, Bing Q, Wan-Xiang C, Ting L. Research on Chinese event extraction. Journal of Chinese Information Processing. 2008;22(1):3–8.
Walker C, Strassel S, Medero J, Maeda K. ACE 2005 Multilingual Training Corpus LDC2006T06. In: Web Download. Philadelphia: Linguistic Data Consortium; 2006.
Getman J, Ellis J, Song Z, Tracey J, Strassel SM. Overview of linguistic resources for the TAC KBP 2017 evaluations: methodologies and results. In: TAC. 2017.
Makoto M, Rune S, Jin-Dong K, Jun’ichi T. Event extraction with complex event classification using rich features. J Bioinform Comput Biol. 2010;8(01):131–46.
Yue G, Hanwang Z, Xibin Z, Shuicheng Y. Event classification in microblogs via social tracking. ACM Trans Intell Syst Technol (TIST). 2017;8(3):1–14.
Yubo C, Liheng X, Kang L, Daojian Z, Jun Z, et al. Event extraction via dynamic multi-pooling convolutional neural networks. 2015.
Yang S, Feng D, Qiao L, Kan Z, Li D. Exploring pre-trained language models for event extraction and generation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019. p. 5284–94.
Nguyen TH, Cho K, Grishman R. Joint event extraction via recurrent neural networks. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016. p. 300–9.
Wang Y, Ni X, Sun J-T, Tong Y, Chen Z. Representing document as dependency graph for document clustering. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. 2011. p. 2177–80.
Leskovec J, Grobelnik M, Milic-Frayling N. Learning sub-structures of document semantic graphs for document summarization. In: LinkKDD Workshop. 2004. p. 133–8.
Zhang T, Liu B, Niu D, Lai K, Xu Y. Multiresolution graph attention networks for relevance matching. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM; 2018. p. 933–42.
Nikolentzos G, Meladianos P, Rousseau F, Stavrakas Y, Vazirgiannis M. Shortest-path graph kernels for document similarity. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017. p. 1890–900.
Yang X, Liao L, Yang Q, Sun B, Xi J. Limited-energy output formation for multiagent systems with intermittent interactions. J Franklin Inst. 2021;358(13):6462–89. Elsevier.
Article MathSciNet Google Scholar
Hammouda KM, Kamel MS. Document similarity using a phrase indexing graph model. Knowl Inf Syst. 2003;6:710–27.
Schenker A, Last M, Bunke H, Kandel A. Clustering of web documents using a graph model. In: Web Document Analysis. 2003.
Yang X, Zhu M, Cai Y, Wang Z, Nie F. Fast spectral clustering with self-adapted bipartite graph learning. Inf Sci. 2023;644:118810. Elsevier.
Putra JWG, Tokunaga T. Evaluating text coherence based on semantic similarity graph. In: TextGraphs@ACL. 2017.
Liu B, Niu D, Wei H, Lin J, He Y, Lai K, Xu Y. Matching article pairs with graphical decomposition and convolutions. In: Proceedings of the 57th Conference of the Association for Computational Linguistics. 2019. p. 6284–94.
Gómez MM, López-López A, Gelbukh A. Information retrieval with conceptual graph matching. In: International Conference on Database and Expert Systems Applications. Springer; 2000. p. 312–21.
Haghighi AD, Ng AY, Manning CD. Robust textual inference via graph matching. In: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing. Association for Computational Linguistics; 2005. p. 387–94.
Sandra K, Ryan M, Joakim N. Dependency parsing. Synth Lect Hum Lang Technol. 2009;1(1):1–127.
Wities R, Shwartz V, Stanovsky G, Adler M, Shapira O, Upadhyay S, Roth D, Martínez-Cámara E, Gurevych I, Dagan I. A consolidated open knowledge representation for multiple texts. In: Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-Level Semantics. 2017. p. 12–24.
Jacob D, Ming-Wei C, Kenton L, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT. 2019.
Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D. The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. 2014. p. 55–60.
Pennington J, Socher R, Manning C. GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014. p. 1532–43.
Comments (0)