Berry, C. et al. Small-vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions. J. Am. Heart Assoc. 8, e011104 (2019).
Article PubMed PubMed Central Google Scholar
Mihatov, N., Januzzi, J. L. Jr & Gaggin, H. K. Type 2 myocardial infarction due to supply-demand mismatch. Trends Cardiovasc. Med. 27, 408–417 (2017).
Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). J. Am. Coll. Cardiol. 72, 2231–2264 (2018).
Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 40, 237–269 (2019).
Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Circulation 138, e618–e651 (2018).
Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P. & Al-Lamee, R. Mortality from ischemic heart disease. Circ. Cardiovasc. Qual. Outcomes 12, e005375 (2019).
Article PubMed PubMed Central Google Scholar
Taubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2021).
Article CAS PubMed Google Scholar
Vedin, O. et al. Significance of ischemic heart disease in patients with heart failure and preserved, midrange, and reduced ejection fraction: a nationwide cohort study. Circ. Heart Fail. 10, e003875 (2017).
Shah, S. J. et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart J. 39, 3439–3450 (2018).
Article CAS PubMed PubMed Central Google Scholar
John, J. E. et al. Coronary artery disease and heart failure with preserved ejection fraction: the ARIC study. J. Am. Heart Assoc. 11, e021660 (2022).
Article CAS PubMed PubMed Central Google Scholar
Elgendy, I. Y. & Pepine, C. J. Heart failure with preserved ejection fraction: is ischemia due to coronary microvascular dysfunction a mechanistic factor? Am. J. Med. 132, 692–697 (2019).
Article PubMed PubMed Central Google Scholar
Elgendy, I. Y., Mahtta, D. & Pepine, C. J. Medical therapy for heart failure caused by ischemic heart disease. Circ. Res. 124, 1520–1535 (2019).
Article CAS PubMed PubMed Central Google Scholar
Marwick, T. H. Ejection fraction pros and cons: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2360–2379 (2018).
Article MathSciNet PubMed Google Scholar
Chapman, A. R. et al. Long-term outcomes in patients with type 2 myocardial infarction and myocardial injury. Circulation 137, 1236–1245 (2018).
Article PubMed PubMed Central Google Scholar
Berry, C. Stable coronary syndromes: the case for consolidating the nomenclature of stable ischemic heart disease. Circulation 136, 437–439 (2017).
Reynolds, H. R. et al. Coronary arterial function and disease in women with no obstructive coronary arteries. Circ. Res. 130, 529–551 (2022).
Article CAS PubMed PubMed Central Google Scholar
Herscovici, R. et al. Ischemia and no obstructive coronary artery disease (INOCA): what is the risk? J. Am. Heart Assoc. 7, e008868 (2018).
Article PubMed PubMed Central Google Scholar
Christiansen, M. N. et al. Age-specific trends in incidence, mortality, and comorbidities of heart failure in Denmark, 1995 to 2012. Circulation 135, 1214–1223 (2017).
Srivaratharajah, K. et al. Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ. Heart Fail. 9, e002562 (2016).
Tsao, C. W. et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).
Foreman, K. J. et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016 — 40 for 195 countries and territories. Lancet 392, 2052–2090 (2018).
Article PubMed PubMed Central Google Scholar
Andersson, C. & Vasan, R. S. Epidemiology of heart failure with preserved ejection fraction. Heart Fail. Clin. 10, 377–388 (2014).
Article PubMed PubMed Central Google Scholar
Ashokprabhu, N. D., Quesada, O., Alvarez, Y. R. & Henry, T. D. INOCA/ANOCA: mechanisms and novel treatments. Am. Heart J. 30, 100302 (2023).
Schirone, L. et al. An overview of the molecular mechanisms associated with myocardial ischemic injury: state of the art and translational perspectives. Cells 11, 1165 (2022).
Article CAS PubMed PubMed Central Google Scholar
Das, S. et al. Noncoding RNAs in cardiovascular disease: current knowledge, tools and technologies for investigation, and future directions: a scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 13, e000062 (2020).
Santovito, D. & Weber, C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat. Rev. Cardiol. 19, 620–638 (2022).
Article CAS PubMed Google Scholar
Frantz, S., Hundertmark, M. J., Schulz-Menger, J., Bengel, F. M. & Bauersachs, J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur. Heart J. 43, 2549–2561 (2022).
Article CAS PubMed PubMed Central Google Scholar
Yan, Y. et al. The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Mol. Ther. 29, 2253–2267 (2021).
Article CAS PubMed PubMed Central Google Scholar
Spencer, H. L. et al. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc. Res. 116, 1981–1994 (2020).
Article CAS PubMed PubMed Central Google Scholar
Jonas, S. & Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433 (2015).
Article CAS PubMed Google Scholar
Zhong, N., Nong, X., Diao, J. & Yang, G. piRNA-6426 increases DNMT3B-mediated SOAT1 methylation and improves heart failure. Aging 14, 2678–2694 (2022).
Article CAS PubMed PubMed Central Google Scholar
Gao, X. Q. et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nat. Cell Biol. 22, 1319–1331 (2020).
Article CAS PubMed Google Scholar
Rajan, K. S. et al. Abundant and altered expression of PIWI-interacting RNAs during cardiac hypertrophy. Heart Lung Circ. 25, 1013–1020 (2016).
Sun, Y. H., Lee, B. & Li, X. Z. The birth of piRNAs: how mammalian piRNAs are produced, originated, and evolved. Mamm. Genome 33, 293–311 (2022).
Article CAS PubMed Google Scholar
Kufel, J. & Grzechnik, P. Small nucleolar RNAs tell a different tale. Trends Genet. 35, 104–117 (2019).
Article CAS PubMed Google Scholar
van Ingen, E. et al. C/D box snoRNA SNORD113-6 guides 2′-O-methylation and protects against site-specific fragmentation of tRNALeu(TAA) in vascular remodeling. Mol. Ther. Nucleic Acids 30, 162–172 (2022).
Article PubMed PubMed Central Google Scholar
Brameier, M., Herwig, A., Reinhardt, R., Walter, L. & Gruber, J. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 39, 675–686 (2011).
Article CAS PubMed Google Scholar
Jagielski, N. P., Rai, A. K., Rajan, K. S., Mangal, V. & Garikipati, V. N. S. A contemporary review of snoRNAs in cardiovascular health: RNA modification and beyond. Mol. Ther. Nucleic Acids 35, 102087 (2024).
Comments (0)