Garon EB, Hellmann MD, Rizvi NA, Carcereny E, Leighl NB, Ahn M-J, et al. Five-year overall survival for patients with advanced non-non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J Clin Oncol. 2019;37:2518.
Article CAS PubMed PubMed Central Google Scholar
Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw. 2020;18:479–89.
Article CAS PubMed Google Scholar
Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.
Article CAS PubMed Google Scholar
Eskander RN, Sill MW, Beffa L, Moore RG, Hope JM, Musa FB, et al. Pembrolizumab plus chemotherapy in advanced endometrial cancer. N Engl J Med. 2023;388:2159–70.
Article CAS PubMed PubMed Central Google Scholar
Colombo N, Dubot C, Lorusso D, Caceres MV, Hasegawa K, Shapira-Frommer R, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N Engl J Med. 2021;385:1856–67.
Article CAS PubMed Google Scholar
Lin AY, Schnitter JM, Gordon LI. Immune checkpoint blockade for the treatment of hodgkin lymphoma. Immunotargets Ther. 2022;11:1–10.
Article PubMed PubMed Central Google Scholar
Cardona Z, Sosman JA, Chandra S, Huang W. Endocrine side effects of immune checkpoint inhibitors. Front Endocrinol (Lausanne). 2023;14:1157805.
Dougan M, Luoma AM, Dougan SK, Wucherpfennig KW. Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell. 2021;184:1575–88.
Article CAS PubMed PubMed Central Google Scholar
Roberts SA, Dougan M. Checking ovarian reserves after checkpoint blockade. Nat Cancer. 2022;3:907–8.
Winship AL, Alesi LR, Sant S, Stringer JM, Cantavenera A, Hegarty T, et al. Checkpoint inhibitor immunotherapy diminishes oocyte number and quality in mice. Nat Cancer. 2022;3:1–13.
Article CAS PubMed Google Scholar
Pogačnik RK, Vrtovec HM, Vizjak A, Levičnik AU, Slabe N, Ihan A. Possible role of autoimmunity in patients with premature ovarian insufficiency. Int J Fertility Sterility. 2014;7:281.
Gao H, Gao L, Wang W. Advances in the cellular immunological pathogenesis and related treatment of primary ovarian insufficiency. Am J Reprod Immunol. 2022;88:e13622.
Article CAS PubMed Google Scholar
Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63:601–10.
Article CAS PubMed Google Scholar
Braun A-S, Vomstein K, Reiser E, Tollinger S, Kyvelidou C, Feil K, et al. NK and T cell subtypes in the endometrium of patients with recurrent pregnancy loss and recurrent implantation failure: implications for pregnancy success. J Clin Med. 2023;12:5585.
Article CAS PubMed PubMed Central Google Scholar
Lemos CN, Reis FM, Pena GN, Silveira LC, Camargos AF. Assessment of fertility protection and ovarian reserve with GnRH antagonist in rats undergoing chemotherapy with cyclophosphamide. Reprod Biol Endocrinol. 2010;8:1–7.
Meirow D, Assad G, Dor J, Rabinovici J. The GnRH antagonist cetrorelix reduces cyclophosphamide-induced ovarian follicular destruction in mice. Hum Reprod. 2004;19:1294–9.
Article CAS PubMed Google Scholar
Wang S, Pei L, Hu T, Jia M, Wang S. Protective effect of goserelin on ovarian reserve during (neo) adjuvant chemotherapy in young breast cancer patients: a prospective cohort study in China. Hum Reprod. 2021;36:976–86.
Wei S, Guo H, Gong Z, Zhang F, Ma Z. Triptorelin and cetrorelix induce immune responses and affect uterine development and expressions of genes and proteins of ESR1, LHR, and FSHR of mice. Immunopharmacol Immunotoxicol. 2016;38:197–204.
Article CAS PubMed Google Scholar
Wei S, Gong Z, An L, Zhang T, Zhang F, Chen S. Cetrorelix and Triptorelin active immunization influences follicle development and receptor expressions of ovaries in mice. J Appl Biomed. 2016;14:49–57.
Poggio F, Lambertini M, Bighin C, Conte B, Blondeaux E, D’Alonzo A, et al. Potential mechanisms of ovarian protection with gonadotropin-releasing hormone agonist in breast cancer patients: a review. Clin Med Insights: Reproduct Health. 2019;13:1179558119864584.
Visser JA, Durlinger AL, Peters IJ, van den Heuvel ER, Rose UM, Kramer P, et al. Increased oocyte degeneration and follicular atresia during the estrous cycle in anti-Müllerian hormone null mice. Endocrinology. 2007;148:2301–8.
Article CAS PubMed Google Scholar
Cheng G, Weihua Z, Mäkinen S, Mäkelä S, Saji S, Warner M, et al. A role for the androgen receptor in follicular atresia of estrogen receptor beta knockout mouse ovary. Biol Reprod. 2002;66:77–84.
Article CAS PubMed Google Scholar
Suttie AW (2015) Boorman’s pathology of the rat: reference and Atlas. In: Suttie AW, (Eds). Elsevier
Meirow D, Lewis H, Nugent D, Epstein M. Subclinical depletion of primordial follicular reserve in mice treated with cyclophosphamide: clinical importance and proposed accurate investigative tool. Hum Reprod. 1999;14:1903–7.
Article CAS PubMed Google Scholar
Yamamoto Y, Kuwahara A, Taniguchi Y, Yamasaki M, Tanaka Y, Mukai Y, et al. Tumor necrosis factor-alpha inhibits ovulation and induces granulosa cell death in rat ovaries. Reprod Med Biol. 2015;14:107–15.
Article CAS PubMed Google Scholar
Sasson R, Winder N, Kees S, Amsterdam A. Induction of apoptosis in granulosa cells by TNF alpha and its attenuation by glucocorticoids involve modulation of Bcl-2. Biochem Biophys Res Commun. 2002;294:51–9.
Article CAS PubMed Google Scholar
Montgomery GW, Galloway SM, Davis GH, McNatty KP. Genes controlling ovulation rate in sheep. Reproduction-Cambridge-. 2001;121:843–52.
Zakharova L, Sharova V, Izvolskaia M. Mechanisms of reciprocal regulation of gonadotropin-releasing hormone (GnRH)-producing and immune systems: the Role of GnRH, cytokines and their receptors in early ontogenesis in normal and pathological conditions. Int J Mol Sci. 2020;22:114.
Barbakadze L, Kristesashvili J, Khonelidze N, Tsagareishvili G. The correlations of anti-mullerian hormone, follicle-stimulating hormone and antral follicle count in different age groups of infertile women. Int J Fertil Steril. 2015;8:393–8.
CAS PubMed PubMed Central Google Scholar
Matsumoto H, Sakai K, Iwashita M. Insulin-like growth factor binding protein-1 induces decidualization of human endometrial stromal cells via alpha5beta1 integrin. Mol Hum Reprod. 2008;14:485–9.
Article CAS PubMed Google Scholar
Okada H, Nie G, Salamonsen LA. Requirement for proprotein convertase 5/6 during decidualization of human endometrial stromal cells in vitro. J Clin Endocrinol Metab. 2005;90:1028–34.
Article CAS PubMed Google Scholar
Okada H, Nakajima T, Yoshimura T, Yasuda K, Kanzaki H. The inhibitory effect of dienogest, a synthetic steroid, on the growth of human endometrial stromal cells in vitro. Mol Hum Reprod. 2001;7:341–7.
Article CAS PubMed Google Scholar
Wu HM, Chen LH, Hsu LT, Lai CH. Immune tolerance of embryo implantation and pregnancy: the role of human decidual stromal cell- and embryonic-derived extracellular vesicles. Int J Mol Sci. 2022;23:13382.
Article CAS PubMed PubMed Central Google Scholar
Rackow BW, Kliman HJ, Taylor HS. GnRH antagonists may affect endometrial receptivity. Fertil Steril. 2008;89:1234–9.
Article CAS PubMed PubMed Central Google Scholar
Meng Y, Guo Y, Qian Y, Guo X, Gao L, Sha J, et al. Effects of GnRH antagonist on endometrial protein profiles in the window of implantation. Proteomics. 2014;14:2350–9.
Article CAS PubMed Google Scholar
Sung N, Salazar García MD, Dambaeva S, Beaman KD, Gilman-Sachs A, Kwak-Kim J. Gonadotropin-releasing hormone analogues lead to pro-inflammatory changes in T lymphocytes. Am J Reprod Immunol. 2016;76:50–8.
Article CAS PubMed Google Scholar
Zhang Y, Ma L, Hu X, Ji J, Mor G, Liao A. The role of the PD-1/PD-L1 axis in macrophage differentiation and function during pregnancy. Hum Reprod. 2019;34:25–36.
Comments (0)