Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644
Article PubMed CAS Google Scholar
Aoun M, Feillet-Coudray C, Fouret G, Chabi B, Crouzier D, Ferreri C et al (2012) Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: effect of different nutritional lipid patterns. Br J Nutr 107(5):647–659. https://doi.org/10.1017/S000711451100331X
Article PubMed CAS Google Scholar
Belosludtseva NV, Kireeva TA, Belosludtsev KN, Khunderyakova NV, Mironova GD (2021) Comparative study of functional changes in Heart Mitochondria in two modes of Epinephrine exposure modeling myocardial Injury in rats. Bull Exp Biol Med 171(6):727–731. https://doi.org/10.1007/s10517-021-05304-2
Article PubMed CAS Google Scholar
Bliss TV, Cooke SF (2011) Long-term potentiation and long-term depression: a clinical perspective. Clin (Sao Paulo) 66(Suppl 1):3–17. https://doi.org/10.1590/s1807-59322011001300002
Cavaliere G, Trinchese G, Penna E, Cimmino F, Pirozzi C, Lama A et al (2019) High-Fat Diet induces Neuroinflammation and mitochondrial impairment in mice cerebral cortex and synaptic fraction. Front Cell Neurosci 13:509. https://doi.org/10.3389/fncel.2019.00509
Article PubMed PubMed Central CAS Google Scholar
Cordero-Herrera I, Guimaraes DD, Moretti C, Zhuge Z, Han H, McCann Haworth S et al (2020) Head-to-head comparison of inorganic nitrate and metformin in a mouse model of cardiometabolic disease. Nitric Oxide 97:48–56. https://doi.org/10.1016/j.niox.2020.01.013
Article PubMed CAS Google Scholar
de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF et al (2020) Animal models of metabolic disorders in the study of neurodegenerative diseases: an overview. Front Neurosci 14:604150. https://doi.org/10.3389/fnins.2020.604150
de Mello AH, Schraiber RB, Goldim MPS, Garcez ML, Gomes ML, de Bem Silveira G et al (2019) Omega-3 fatty acids attenuate brain alterations in High-Fat Diet-Induced obesity model. Mol Neurobiol 56(1):513–524. https://doi.org/10.1007/s12035-018-1097-6
Article PubMed CAS Google Scholar
de Paula GC, Brunetta HS, Engel DF, Gaspar JM, Velloso LA, Engblom D et al (2021) Hippocampal function is impaired by a short-term High-Fat Diet in mice: increased blood-brain barrier permeability and neuroinflammation as triggering events. Front Neurosci 15:734158. https://doi.org/10.3389/fnins.2021.734158
Article PubMed PubMed Central Google Scholar
Diaz A, Munoz-Arenas G, Venegas B, Vazquez-Roque R, Flores G, Guevara J et al (2021) Metforminium Decavanadate (MetfDeca) Treatment ameliorates hippocampal neurodegeneration and Recognition Memory in a metabolic syndrome model. Neurochem Res 46(5):1151–1165. https://doi.org/10.1007/s11064-021-03250-z
Article PubMed CAS Google Scholar
Dutheil S, Ota KT, Wohleb ES, Rasmussen K, Duman RS (2016) High-Fat Diet Induced anxiety and Anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacology 41(7):1874–1887. https://doi.org/10.1038/npp.2015.357
Article PubMed PubMed Central CAS Google Scholar
Flamment M, Gueguen N, Wetterwald C, Simard G, Malthiery Y, Ducluzeau PH (2009) Effects of the cannabinoid CB1 antagonist rimonabant on hepatic mitochondrial function in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 297(5):E1162–1170. https://doi.org/10.1152/ajpendo.00169.2009
Article PubMed CAS Google Scholar
Gao W, Wang W, Zhang J, Deng P, Hu J, Yang J et al (2019) Allicin ameliorates obesity comorbid depressive-like behaviors: involvement of the oxidative stress, mitochondrial function, autophagy, insulin resistance and NOX/Nrf2 imbalance in mice. Metab Brain Dis 34(5):1267–1280. https://doi.org/10.1007/s11011-019-00443-y
Article PubMed CAS Google Scholar
Gavini K, Parameshwaran K (2023) Western blot. StatPearls. Treasure Island (FL) ineligible companies. Kodeeswaran Parameshwaran declares no relevant financial relationships with ineligible companies, Disclosure
Hakala JO, Pahkala K, Juonala M, Salo P, Kahonen M, Hutri-Kahonen N et al (2021) Cardiovascular Risk factor trajectories since childhood and cognitive performance in midlife: the Cardiovascular Risk in Young finns Study. Circulation 143(20):1949–1961. https://doi.org/10.1161/CIRCULATIONAHA.120.052358
Article PubMed CAS Google Scholar
Hao S, Dey A, Yu X, Stranahan AM (2016) Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun 51:230–239. https://doi.org/10.1016/j.bbi.2015.08.023
Hirode G, Wong RJ (2020) Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA 323(24):2526–2528. https://doi.org/10.1001/jama.2020.4501
Article PubMed PubMed Central Google Scholar
Hutter E, Unterluggauer H, Garedew A, Jansen-Durr P, Gnaiger E (2006) High-resolution respirometry–a modern tool in aging research. Exp Gerontol 41(1):103–109. https://doi.org/10.1016/j.exger.2005.09.011
Article PubMed CAS Google Scholar
Johns C, Gavras I, Handy DE, Salomao A, Gavras H (1996) Models of experimental hypertension in mice. Hypertension 28(6):1064–1069. https://doi.org/10.1161/01.hyp.28.6.1064
Article PubMed CAS Google Scholar
Kitakata H, Endo J, Hashimoto S, Mizuno E, Moriyama H, Shirakawa K et al (2021) Imeglimin prevents heart failure with preserved ejection fraction by recovering the impaired unfolded protein response in mice subjected to cardiometabolic stress. Biochem Biophys Res Commun 572:185–190. https://doi.org/10.1016/j.bbrc.2021.07.090
Article PubMed CAS Google Scholar
Knopman DS, Mosley TH, Catellier DJ, Coker LH (2009) & Atherosclerosis Risk in Communities Study Brain, M. R. I. S. Fourteen-year longitudinal study of vascular risk factors, APOE genotype, and cognition: the ARIC MRI Study. Alzheimers Dement, 5(3), 207–214, https://doi.org/10.1016/j.jalz.2009.01.027
Kowaltowski AJ, Menezes-Filho SL, Assali EA, Goncalves IG, Cabral-Costa JV, Abreu P et al (2019) Mitochondrial morphology regulates organellar ca(2+) uptake and changes cellular ca(2+) homeostasis. FASEB J 33(12):13176–13188. https://doi.org/10.1096/fj.201901136R
Article PubMed PubMed Central CAS Google Scholar
Livingston JM, McDonald MW, Gagnon T, Jeffers MS, Gomez-Smith M, Antonescu S et al (2020) Influence of metabolic syndrome on cerebral perfusion and cognition. Neurobiol Dis 137:104756. https://doi.org/10.1016/j.nbd.2020.104756
Article PubMed CAS Google Scholar
Mancini G, Dias C, Lourenco CF, Laranjinha J, de Bem A, Ledo A (2021) A High Fat/Cholesterol Diet recapitulates some Alzheimer’s Disease-Like features in mice: focus on hippocampal mitochondrial dysfunction. J Alzheimers Dis 82(4):1619–1633. https://doi.org/10.3233/JAD-210122
Article PubMed CAS Google Scholar
Mellendijk L, Wiesmann M, Kiliaan AJ (2015) Impact of Nutrition on cerebral circulation and cognition in the metabolic syndrome. Nutrients 7(11):9416–9439. https://doi.org/10.3390/nu7115477
Article PubMed PubMed Central CAS Google Scholar
Moreira PI, Santos MS, Seica R, Oliveira CR (2007) Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. J Neurol Sci 257(1–2):206–214. https://doi.org/10.1016/j.jns.2007.01.017
Article PubMed CAS Google Scholar
Moreno-Fernandez S, Garces-Rimon M, Vera G, Astier J, Landrier JF, Miguel M (2018) High Fat/High glucose Diet induces metabolic syndrome in an experimental rat model. Nutrients 10(10). https://doi.org/10.3390/nu10101502
Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P et al (2010) The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol 56(14):1113–1132. https://doi.org/10.1016/j.jacc.2010.05.034
Nath S, Ghosh SK, Choudhury Y (2017) A murine model of type 2 diabetes mellitus developed using a combination of high fat diet and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans. J Pharmacol Toxicol Methods 84:20–30. https://doi.org/10.1016/j.vascn.2016.10.007
Article PubMed CAS Google Scholar
National Research Council (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington, DC
Park HS, Cho HS, Kim TW (2018) Physical exercise promotes memory capability by enhancing hippocampal mitochondrial functions and inhibiting apoptosis in obesity-induced insulin resistance by high fat diet. Metab Brain Dis 33(1):283–292. https://doi.org/10.1007/s11011-017-0160-8
Article PubMed CAS Google Scholar
Park G, Lee JY, Han HM, An HS, Jin Z, Jeong EA et al (2021) Ablation of dynamin-related protein 1 promotes diabetes-induced synaptic injury in the hippocampus. Cell Death Dis 12(5):445. https://doi.org/10.1038/s41419-021-03723-7
Article PubMed PubMed Central CAS Google Scholar
Pintana H, Apaijai N, Chattipakorn N, Chattipakorn SC (2013) DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol 218(1):1–11. https://doi.org/10.1530/JOE-12-0521
Article PubMed CAS Google Scholar
Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM (2019) Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab 316(2):E268–E285. https://doi.org/10.1152/ajpendo.00314.2018
Comments (0)