Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. https://doi.org/10.1038/nrdp.2016.57.
Walter K, What. Is Polycystic Ovary Syndrome? Jama. 2022;327(3):294.
Hart R. PCOS and infertility. Panminerva Med. 2008;50(4):305–14.
Johnson JE, Daley D, Tarta C, Stanciu PI. Risk of endometrial cancer in patients with polycystic ovarian syndrome: a meta–analysis. Oncol Lett. 2023;25(4):168. https://doi.org/10.3892/ol.2023.13754.
Article PubMed PubMed Central Google Scholar
Persson S, Elenis E, Turkmen S, Kramer MS, Yong EL, Poromaa IS. Higher risk of type 2 diabetes in women with hyperandrogenic polycystic ovary syndrome. Fertil Steril. 2021;116(3):862–71.
Article CAS PubMed Google Scholar
1016/. j.fertnstert.2021.04.018.
Wekker V, van Dammen L, Koning A, Heida KY, Painter RC, Limpens J, et al. Long-term cardiometabolic disease risk in women with PCOS: a systematic review and meta-analysis. Hum Reprod Update. 2020;26(6):942–60. https://doi.org/10.1093/humupd/dmaa029.
Article CAS PubMed PubMed Central Google Scholar
Cooney LG, Dokras A. Depression and anxiety in polycystic ovary syndrome: etiology and treatment. Curr Psychiatry Rep. 2017;19(11):83. https://doi.org/10.1007/s11920-017-0834-2.
eBioMedicine. Polycystic ovary syndrome: deciphering mechanisms to facilitate management and treatment. EBioMedicine. 2023;94:104754. https://doi.org/10.1016/j.ebiom.2023.104754.
Article CAS PubMed PubMed Central Google Scholar
Diamanti-Kandarakis E, Christakou CD, Kandaraki E, Economou FN. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol. 2010;162(2):193–212. https://doi.org/10.1530/eje-09-0733.
Article CAS PubMed Google Scholar
McCartney CR, Marshall JC. CLINICAL PRACTICE. Polycystic ovary syndrome. N Engl J Med. 2016;375(1):54–64. https://doi.org/10.1056/NEJMcp1514916.
Article PubMed PubMed Central Google Scholar
Velazquez EM, Mendoza S, Hamer T, Sosa F, Glueck CJ. Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism. 1994;43(5):647–54. https://doi.org/10.1016/0026-0495(94)90209-7.
Article CAS PubMed Google Scholar
Nadkarni P, Chepurny OG, Holz GG. Regulation of glucose homeostasis by GLP-1. Prog Mol Biol Transl Sci. 2014;121:23–65. https://doi.org/10.1016/b978-0-12-800101-1.00002-8.
Article CAS PubMed PubMed Central Google Scholar
Siamashvili M, Davis SN. Update on the effects of GLP-1 receptor agonists for the treatment of polycystic ovary syndrome. Expert Rev Clin Pharmacol. 2021;14(9):1081–9.
Article CAS PubMed Google Scholar
Bednarz K, Kowalczyk K, Cwynar M, Czapla D, Czarkowski W, Kmita D, et al. The role of Glp-1 receptor agonists in insulin resistance with concomitant obesity treatment in polycystic ovary syndrome. Int J Mol Sci. 2022;23(8). https://doi.org/10.3390/ijms23084334.
Nylander M, Frøssing S, Clausen HV, Kistorp C, Faber J, Skouby SO. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: a randomized clinical trial. Reprod Biomed Online. 2017;35(1):121–7. https://doi.org/10.1016/j.rbmo.2017.03.023.
Article CAS PubMed Google Scholar
Sheftel AD, Stehling O, Pierik AJ, Elsässer HP, Mühlenhoff U, Webert H, et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci U S A. 2010;107(26):11775–80.
Article ADS CAS PubMed PubMed Central Google Scholar
Gorry A, White DM, Franks S. Infertility in polycystic ovary syndrome: focus on low-dose gonadotropin treatment. Endocrine. 2006;30(1):27–33. https://doi.org/10.1385/endo:30:1:27.
Article CAS PubMed Google Scholar
Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet. 2013;30(10):1255–61.
Article PubMed PubMed Central Google Scholar
Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27(1):32–42. https://doi.org/10.1055/s-0028-1108008.
Article CAS PubMed PubMed Central Google Scholar
Das M, Djahanbakhch O, Hacihanefioglu B, Saridogan E, Ikram M, Ghali L, et al. Granulosa cell survival and proliferation are altered in polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(3):881–7. https://doi.org/10.1210/jc.2007-1650.
Article CAS PubMed Google Scholar
Wang Z, Dong H, Yang L, Yi P, Wang Q, Huang D. The role of FDX1 in granulosa cell of polycystic ovary syndrome (PCOS). BMC Endocr Disord. 2021;21(1):119. https://doi.org/10.1186/s12902-021-00775-w.
Article CAS PubMed PubMed Central Google Scholar
Kim EJ, Jang M, Choi JH, Park KS, Cho IH. An Improved Dehydroepiandrosterone-Induced Rat Model of Polycystic Ovary Syndrome (PCOS): post-pubertal improve PCOS’s features. Front Endocrinol (Lausanne). 2018;9:735. https://doi.org/10.3389/fendo.2018.00735.
Peng F, Hu Y, Peng S, Zeng N, Shi L. Apigenin exerts protective effect and restores ovarian function in dehydroepiandrosterone induced polycystic ovary syndrome rats: a biochemical and histological analysis. Ann Med. 2022;54(1):578–87. https://doi.org/10.1080/07853890.2022.2034933.
Article CAS PubMed PubMed Central Google Scholar
Shen HR, Xu X, Li XL. Berberine exerts a protective effect on rats with polycystic ovary syndrome by inhibiting the inflammatory response and cell apoptosis. Reprod Biol Endocrinol. 2021;19(1):3. https://doi.org/10.1186/s12958-020-00684-y.
Article CAS PubMed PubMed Central Google Scholar
Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 2015;36(5):487–525. https://doi.org/10.1210/er.2015-1018.
Article CAS PubMed PubMed Central Google Scholar
Cao J, Huo P, Cui K, Wei H, Cao J, Wang J, et al. Follicular fluid-derived exosomal miR-143-3p/miR-155-5p regulate follicular dysplasia by modulating glycolysis in granulosa cells in polycystic ovary syndrome. Cell Commun Signal. 2022;20(1):61. https://doi.org/10.1186/s12964-022-00876-6.
Article CAS PubMed PubMed Central Google Scholar
Peng Q, Chen X, Liang X, Ouyang J, Wang Q, Ren S, et al. Metformin improves polycystic ovary syndrome in mice by inhibiting ovarian ferroptosis. Front Endocrinol (Lausanne). 2023;14:1070264. https://doi.org/10.3389/fendo.2023.1070264.
Xing J, Qiao G, Luo X, Liu S, Chen S, Ye G, et al. Ferredoxin 1 regulates granulosa cell apoptosis and autophagy in polycystic ovary syndrome. Clin Sci (Lond). 2023;137(6):453–68. https://doi.org/10.1042/cs20220408.
Article CAS PubMed Google Scholar
Ge JJ, Wang DJ, Song W, Shen SM, Ge WH. The effectiveness and safety of liraglutide in treating overweight/obese patients with polycystic ovary syndrome: a meta-analysis. J Endocrinol Invest. 2022;45(2):261–73. https://doi.org/10.1007/s40618-021-01666-6.
Article CAS PubMed Google Scholar
Xing C, Zhao H, Zhang J, He B. Effect of metformin versus metformin plus liraglutide on gonadal and metabolic profiles in overweight patients with polycystic ovary syndrome. Front Endocrinol (Lausanne). 2022;13:945609. https://doi.org/10.3389/fendo.2022.945609.
Tang Z, Xu R, Zhang Z, Shi C, Zhang Y, Yang H, et al. HIF-1α protects Granulosa cells from Hypoxia-Induced apoptosis during Follicular Development by Inducing Autophagy. Front Cell Dev Biol. 2021;9:631016. https://doi.org/10.3389/fcell.2021.631016.
Comments (0)