Structural and Functional Analyses of the Flavoprotein Disulfide Reductase FN0820 of Fusobacterium nucleatum

Baek, Y., Kim, J., Ahn, J., Jo, I., Hong, S., Ryu, S., & Ha, N. C. (2020). Structure and function of the hypochlorous acid–induced flavoprotein RclA from Escherichia coli. Journal of Biological Chemistry, 295, 3202–3212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basic, A., Blomqvist, M., Dahlén, G., & Svensäter, G. (2017). The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine. BMC Microbiology, 17, 61.

Article  PubMed  PubMed Central  Google Scholar 

Brennan, C. A., & Garrett, W. S. (2019). Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nature Reviews Microbiology, 17, 156–166.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Derke, R. M., Barron, A. J., Billiot, C. E., Chaple, I. F., Lapi, S. E., Broderick, N. A., & Gray, M. J. (2020). The Cu (II) reductase RclA protects Escherichia coli against the combination of hypochlorous acid and intracellular copper. mBio, 11, e01905–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz, P. I., Zilm, P. S., & Rogers, A. H. (2000). The response to oxidative stress of Fusobacterium nucleatum grown in continuous culture. FEMS Microbiology Letters, 187, 31–34.

Article  CAS  PubMed  Google Scholar 

Diaz, P. I., Zilm, P. S., & Rogers, A. H. (2002). Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology, 148, 467–472.

Article  CAS  PubMed  Google Scholar 

Guo, L., Shokeen, B., He, X., Shi, W., & Lux, R. (2017). Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum. Molecular Oral Microbiology, 32, 355–364.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gursoy, U. K., Pöllänen, M., Könönen, E., & Uitto, V. J. (2010). Biofilm formation enhances the oxygen tolerance and invasiveness of Fusobacterium nucleatum in an oral mucosa culture model. Journal of Periodontology, 81, 1084–1091.

Article  CAS  PubMed  Google Scholar 

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleiger, G., & Eisenberg, D. (2002). GXXXG and GXXXA motifs stabilize FAD and NAD(P)-binding Rossmann folds through Cα–H···O hydrogen bonds and van der Waals interactions. Journal of Molecular Biology, 323, 69–76.

Article  CAS  PubMed  Google Scholar 

Ledwidge, R., Patel, B., Dong, A., Fiedler, D., Falkowski, M., Zelikova, J., Summers, A. O., Pai, E. F., & Miller, S. M. (2005). NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions. Biochemistry, 44, 11402–11416.

Article  CAS  PubMed  Google Scholar 

Meredith, J. D., Chapman, I., Ulrich, K., Sebastian, C., Stull, F., & Gray, M. J. (2022). Escherichia coli RclA is a highly active hypothiocyanite reductase. Proceedings of the National Academy of Sciences, 119, e2119368119.

Article  CAS  Google Scholar 

Parker, B. W., Schwessinger, E. A., Jakob, U., & Gray, M. J. (2013). The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli. Journal of Biological Chemistry, 288, 32574–32584.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schrödinger, L. (2010). The PyMOL molecular graphics system. Version 1.5.

Shearer, H. L., Loi, V. V., Weiland, P., Bange, G., Altegoer, F., Hampton, M. B., Antelmann, H., & Dickerhof, N. (2023). MerA functions as a hypothiocyanous acid reductase and defense mechanism in Staphylococcus aureus. Molecular Microbiology, 119, 456–470.

Article  CAS  PubMed  Google Scholar 

Shen, Y., & Buick, R. (2004). The antiquity of microbial sulfate reduction. Earth-Science Reviews, 64, 243–272.

Article  CAS  Google Scholar 

Signat, B., Roques, C., Poulet, P., & Duffaut, D. (2011). Role of Fusobacterium nucleatum in periodontal health and disease. Current Issues in Molecular Biology, 13, 25–36.

CAS  PubMed  Google Scholar 

Yoshida, Y., Ito, S., Kamo, M., Kezuka, Y., Tamura, H., Kunimatsu, K., & Kato, H. (2010). Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. Microbiology, 156, 2260–2269.

Article  CAS  PubMed  Google Scholar 

Yoshihara, T., Kioi, M., Baba, J., Usuda, H., Kessoku, T., Iwaki, M., Takatsu, T., Misawa, N., Ashikari, K., Matsuura, T., et al. (2021). A prospective interventional trial on the effect of periodontal treatment on Fusobacterium nucleatum abundance in patients with colorectal tumours. Scientific Reports, 11, 23719.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif