Baek, Y., Kim, J., Ahn, J., Jo, I., Hong, S., Ryu, S., & Ha, N. C. (2020). Structure and function of the hypochlorous acid–induced flavoprotein RclA from Escherichia coli. Journal of Biological Chemistry, 295, 3202–3212.
Article CAS PubMed PubMed Central Google Scholar
Basic, A., Blomqvist, M., Dahlén, G., & Svensäter, G. (2017). The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine. BMC Microbiology, 17, 61.
Article PubMed PubMed Central Google Scholar
Brennan, C. A., & Garrett, W. S. (2019). Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nature Reviews Microbiology, 17, 156–166.
Article CAS PubMed PubMed Central Google Scholar
Derke, R. M., Barron, A. J., Billiot, C. E., Chaple, I. F., Lapi, S. E., Broderick, N. A., & Gray, M. J. (2020). The Cu (II) reductase RclA protects Escherichia coli against the combination of hypochlorous acid and intracellular copper. mBio, 11, e01905–20.
Article CAS PubMed PubMed Central Google Scholar
Diaz, P. I., Zilm, P. S., & Rogers, A. H. (2000). The response to oxidative stress of Fusobacterium nucleatum grown in continuous culture. FEMS Microbiology Letters, 187, 31–34.
Article CAS PubMed Google Scholar
Diaz, P. I., Zilm, P. S., & Rogers, A. H. (2002). Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology, 148, 467–472.
Article CAS PubMed Google Scholar
Guo, L., Shokeen, B., He, X., Shi, W., & Lux, R. (2017). Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum. Molecular Oral Microbiology, 32, 355–364.
Article CAS PubMed PubMed Central Google Scholar
Gursoy, U. K., Pöllänen, M., Könönen, E., & Uitto, V. J. (2010). Biofilm formation enhances the oxygen tolerance and invasiveness of Fusobacterium nucleatum in an oral mucosa culture model. Journal of Periodontology, 81, 1084–1091.
Article CAS PubMed Google Scholar
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.
Article CAS PubMed PubMed Central Google Scholar
Kleiger, G., & Eisenberg, D. (2002). GXXXG and GXXXA motifs stabilize FAD and NAD(P)-binding Rossmann folds through Cα–H···O hydrogen bonds and van der Waals interactions. Journal of Molecular Biology, 323, 69–76.
Article CAS PubMed Google Scholar
Ledwidge, R., Patel, B., Dong, A., Fiedler, D., Falkowski, M., Zelikova, J., Summers, A. O., Pai, E. F., & Miller, S. M. (2005). NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions. Biochemistry, 44, 11402–11416.
Article CAS PubMed Google Scholar
Meredith, J. D., Chapman, I., Ulrich, K., Sebastian, C., Stull, F., & Gray, M. J. (2022). Escherichia coli RclA is a highly active hypothiocyanite reductase. Proceedings of the National Academy of Sciences, 119, e2119368119.
Parker, B. W., Schwessinger, E. A., Jakob, U., & Gray, M. J. (2013). The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli. Journal of Biological Chemistry, 288, 32574–32584.
Article CAS PubMed PubMed Central Google Scholar
Schrödinger, L. (2010). The PyMOL molecular graphics system. Version 1.5.
Shearer, H. L., Loi, V. V., Weiland, P., Bange, G., Altegoer, F., Hampton, M. B., Antelmann, H., & Dickerhof, N. (2023). MerA functions as a hypothiocyanous acid reductase and defense mechanism in Staphylococcus aureus. Molecular Microbiology, 119, 456–470.
Article CAS PubMed Google Scholar
Shen, Y., & Buick, R. (2004). The antiquity of microbial sulfate reduction. Earth-Science Reviews, 64, 243–272.
Signat, B., Roques, C., Poulet, P., & Duffaut, D. (2011). Role of Fusobacterium nucleatum in periodontal health and disease. Current Issues in Molecular Biology, 13, 25–36.
Yoshida, Y., Ito, S., Kamo, M., Kezuka, Y., Tamura, H., Kunimatsu, K., & Kato, H. (2010). Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. Microbiology, 156, 2260–2269.
Article CAS PubMed Google Scholar
Yoshihara, T., Kioi, M., Baba, J., Usuda, H., Kessoku, T., Iwaki, M., Takatsu, T., Misawa, N., Ashikari, K., Matsuura, T., et al. (2021). A prospective interventional trial on the effect of periodontal treatment on Fusobacterium nucleatum abundance in patients with colorectal tumours. Scientific Reports, 11, 23719.
Comments (0)