Alfandari D, Taneyhill LA (2018) Cut loose and run: the complex role of ADAM proteases during neural crest cell development. Genesis (New York, NY: 2000) 56:e23095. https://doi.org/10.1002/dvg.23095
Chen L, Zhou Z, Hu C et al (2022) Platelet membrane-coated nanocarriers targeting plaques to deliver anti-CD47 antibody for atherosclerotic therapy. Research (Washington, DC) 2022:9845459. https://doi.org/10.34133/2022/9845459
Chen R, Jin G, McIntyre TM (2017) The soluble protease ADAMDEC1 released from activated platelets hydrolyzes platelet membrane pro-epidermal growth factor (EGF) to active high-molecular-weight EGF. J Biol Chem 292:10112–10122. https://doi.org/10.1074/jbc.M116.771642
Article CAS PubMed PubMed Central Google Scholar
Chen Z, Xie X, Jiang N et al (2021) CCR5 signaling promotes lipopolysaccharide-induced macrophage recruitment and alveolar developmental arrest. Cell Death Dis 12:184. https://doi.org/10.1038/s41419-021-03464-7
Article CAS PubMed PubMed Central Google Scholar
Couchie D, Vaisman B, Abderrazak A et al (2017) Human plasma thioredoxin-80 increases with age and in ApoE(-/-) mice induces inflammation, angiogenesis, and atherosclerosis. Circulation 136:464–475. https://doi.org/10.1161/circulationaha.117.027612
Article CAS PubMed PubMed Central Google Scholar
Crouser ED, Culver DA, Knox KS et al (2009) Gene expression profiling identifies MMP-12 and ADAMDEC1 as potential pathogenic mediators of pulmonary sarcoidosis. Am J Respir Crit Care Med 179:929–938. https://doi.org/10.1164/rccm.200803-490OC
Article CAS PubMed PubMed Central Google Scholar
Deng X, Zhang X, Tang B et al (2018) Design, synthesis, and evaluation of dihydrobenzo[cd]indole-6-sulfonamide as TNF-α inhibitors. Front Chem 6:98. https://doi.org/10.3389/fchem.2018.00098
Article CAS PubMed PubMed Central Google Scholar
Gareus R, Kotsaki E, Xanthoulea S et al (2008) Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab 8:372–383. https://doi.org/10.1016/j.cmet.2008.08.016
Article CAS PubMed Google Scholar
Geng YJ (2001) Biologic effect and molecular regulation of vascular apoptosis in atherosclerosis. Curr Atheroscler Rep 3:234–242. https://doi.org/10.1007/s11883-001-0066-z
Article CAS PubMed Google Scholar
Ha SE, Jorgensen BG, Wei L et al (2022) Metalloendopeptidase ADAM-like decysin 1 (ADAMDEC1) in colonic subepithelial PDGFRα(+) cells is a new marker for inflammatory bowel disease. Int J Mol Sci 23. https://doi.org/10.3390/ijms23095007
Hendricks WPD, Briones N, Halperin RF et al (2019) PD-1-associated gene expression signature of neoadjuvant trastuzumab-treated tumors correlates with patient survival in HER2-positive breast cancer. Cancers 11. https://doi.org/10.3390/cancers11101566
Ji N, Wang Y, Gong X et al (2021) CircMTO1 inhibits ox-LDL-stimulated vascular smooth muscle cell proliferation and migration via regulating the miR-182-5p/RASA1 axis. Mol Med (Cambridge, Mass) 27:73. https://doi.org/10.1186/s10020-021-00330-2
Jimenez-Pascual A, Hale JS, Kordowski A et al (2019) ADAMDEC1 maintains a growth factor signaling loop in cancer stem cells. Cancer Discov 9:1574–1589. https://doi.org/10.1158/2159-8290.cd-18-1308
Article CAS PubMed PubMed Central Google Scholar
Kuniyoshi N, Imai H, Kiso Y et al (2021) Biological potentials for a family of disintegrin and metalloproteinase (ADAMDEC)-1 in mouse normal pregnancy. J Vet Med Sci 83:512–521. https://doi.org/10.1292/jvms.20-0570
Article CAS PubMed PubMed Central Google Scholar
Li W, Gonzalez KM, Chung J et al (2022) Surface-modified nanotherapeutics targeting atherosclerosis. Biomater Sci 10:5459–5471. https://doi.org/10.1039/d2bm00660j
Article CAS PubMed PubMed Central Google Scholar
Liu D, Wang X, Zhang M et al (2020) WISP1 alleviates lipid deposition in macrophages via the PPARγ/CD36 pathway in the plaque formation of atherosclerosis. J Cell Mol Med 24:11729–11741. https://doi.org/10.1111/jcmm.15783
Article CAS PubMed PubMed Central Google Scholar
Lund J, Troeberg L, Kjeldal H et al (2015) Evidence for restricted reactivity of ADAMDEC1 with protein substrates and endogenous inhibitors. J Biol Chem 290:6620–6629. https://doi.org/10.1074/jbc.M114.601724
Article CAS PubMed PubMed Central Google Scholar
Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679. https://doi.org/10.1016/j.cell.2007.05.003
Article CAS PubMed Google Scholar
Nakashima Y, Plump AS, Raines EW et al (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140. https://doi.org/10.1161/01.atv.14.1.133
Article CAS PubMed Google Scholar
Nasiri-Ansari Ν, Dimitriadis GK, Agrogiannis G et al (2018) Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc Diabetol 17:106. https://doi.org/10.1186/s12933-018-0749-1
Article CAS PubMed Google Scholar
Oh BY, Cho J, Hong HK et al (2017) Exome and transcriptome sequencing identifies loss of PDLIM2 in metastatic colorectal cancers. Cancer Manag Res 9:581–589. https://doi.org/10.2147/cmar.s149002
Article CAS PubMed PubMed Central Google Scholar
Papaspyridonos M, Smith A, Burnand KG et al (2006) Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 26:1837–1844. https://doi.org/10.1161/01.atv.0000229695.68416.76
Article CAS PubMed Google Scholar
Patel AP, Natarajan P (2019) Completing the genetic spectrum influencing coronary artery disease: from germline to somatic variation. Cardiovasc Res 115:830–843. https://doi.org/10.1093/cvr/cvz032
Article CAS PubMed PubMed Central Google Scholar
Pateras I, Giaginis C, Tsigris C et al (2014) NF-κB signaling at the crossroads of inflammation and atherogenesis: searching for new therapeutic links. Expert Opin Ther Targets 18:1089–1101. https://doi.org/10.1517/14728222.2014.938051
Article CAS PubMed Google Scholar
Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581. https://doi.org/10.1152/physrev.00024.2005
Article CAS PubMed Google Scholar
Tombor LS, John D, Glaser SF et al (2021) Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nat Commun 12:681. https://doi.org/10.1038/s41467-021-20905-1
Article CAS PubMed PubMed Central Google Scholar
Xue X, Li F, Xu M et al (2023) Gastrodin ameliorates atherosclerosis by inhibiting foam cells formation and inflammation through down-regulating NF-κB pathway. Nutr Metab 20:9. https://doi.org/10.1186/s12986-022-00722-z
Yako Y, Hayashi T, Takeuchi Y et al (2018) ADAM-like decysin-1 (ADAMDEC1) is a positive regulator of epithelial defense against cancer (EDAC) that promotes apical extrusion of RasV12-transformed cells. Sci Rep 8:9639. https://doi.org/10.1038/s41598-018-27469-z
Article CAS PubMed PubMed Central Google Scholar
Yang CY, Chanalaris A, Troeberg L (2017) ADAMTS and ADAM metalloproteinases in osteoarthritis - looking beyond the ‘usual suspects’. Osteoarthr Cartil 25:1000–1009. https://doi.org/10.1016/j.joca.2017.02.791
Zadelaar S, Kleemann R, Verschuren L et al (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27:1706–1721. https://doi.org/10.1161/atvbaha.107.142570
Article CAS PubMed Google Scholar
Zernecke A, Weber C (2010) Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc Res 86:192–201. https://doi.org/10.1093/cvr/cvp391
Article CAS PubMed Google Scholar
Zhao J, Wang J, Liu J et al (2022) Effect and mechanisms of kaempferol against endometriosis based on network pharmacology and in vitro experiments. BMC Complementary Med Ther 22:254. https://doi.org/10.1186/s12906-022-03729-4
Zhou H, Jiang F, Leng Y (2021) Propofol ameliorates ox-LDL-induced endothelial damage through enhancing autophagy via PI3K/Akt/m-TOR pathway: a novel therapeutic strategy in atherosclerosis. Front Mol Biosci 8:695336. https://doi.org/10.3389/fmolb.2021.695336
Article CAS PubMed PubMed Central Google Scholar
Zhu W, Shi L, Gong Y et al (2022) Upregulation of ADAMDEC1 correlates with tumor progression and predicts poor prognosis in non-small cell lung cancer (NSCLC) via the PI3K/AKT pathway. Thoracic cancer 13:1027–1039. https://doi.org/10.1111/1759-7714.14354
Comments (0)