Gong, Y. et al. COVID-19 induced economic slowdown and mental health issues. Front. Psychol. 13, 777350 (2022).
Article PubMed PubMed Central Google Scholar
World Economic Situation and Prospects 2023 (United Nations Department of Economic and Social Affairs, the United Nations Conference on Trade and Development, Economic Commission for Africa, Economic Commission for Europe, Economic Commission for Latin America and the Caribbean, Economic and Social Commission for Asia and the Pacific, Economic and Social Commission for Western Asia, and the United Nations World Tourism Organization, 2023).
DeGrace, M. M. et al. Defining the risk of SARS-CoV-2 variants on immune protection. Nature 605, 640–652 (2022).
Article CAS PubMed PubMed Central Google Scholar
Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell. Biol. 23, 3–20 (2022).
Article CAS PubMed Google Scholar
Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wiersinga, W. J. et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. J. Am. Med. Assoc. 324, 782–793 (2020).
Merad, M., Blish, C. A., Sallusto, F. & Iwasaki, A. The immunology and immunopathology of COVID-19. Science 375, 1122–1127 (2022).
Article CAS PubMed Google Scholar
Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27, 601–615 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zeng, N. et al. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: call for research priority and action. Mol. Psychiatry 28, 423–433 (2022).
Article PubMed PubMed Central Google Scholar
Slack, F. J. & Chinnaiyan, A. M. The role of non-coding RNAs in oncology. Cell 179, 1033–1055 (2019).
Article CAS PubMed PubMed Central Google Scholar
Beermann, J., Piccoli, M. T., Viereck, J. & Thum, T. Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol. Rev. 96, 1297–1325 (2016).
Article CAS PubMed Google Scholar
Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell. Biol. 22, 96–118 (2021).
Article CAS PubMed Google Scholar
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).
Article CAS PubMed Google Scholar
Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).
Article CAS PubMed PubMed Central Google Scholar
Chen, L. L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell. Biol. 21, 475–490 (2020).
Article CAS PubMed Google Scholar
Chen, Y., Li, Z., Chen, X. & Zhang, S. Long non-coding RNAs: from disease code to drug role. Acta Pharm. Sin. B. 11, 340–354 (2021).
Article CAS PubMed Google Scholar
Zhang, X. et al. Viral circular RNAs and their possible roles in virus-host interaction. Front. Immunol. 13, 939768 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mishra, R., Kumar, A., Ingle, H. & Kumar, H. The interplay between viral-derived miRNAs and host immunity during infection. Front. Immunol. 10, 3079 (2019).
Article CAS PubMed Google Scholar
Li, Z. et al. Viral long non-coding RNA regulates virus life-cycle and pathogenicity. Mol. Biol. Rep. 49, 6693–6700 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tycowski, K. T. et al. Viral noncoding RNAs: more surprises. Genes. Dev. 29, 567–584 (2015).
Article CAS PubMed PubMed Central Google Scholar
Cai, Z. et al. Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Brief Bioinforma 22, 1297–1308 (2021).
Aydemir, M. N. et al. Computationally predicted SARS-COV-2 encoded microRNAs target NFKB, JAK/STAT and TGFB signaling pathways. Gene Rep. 22, 101012 (2021).
Article CAS PubMed Google Scholar
Musazzi, L. et al. Stress, microRNAs, and stress-related psychiatric disorders: an overview. Mol. Psychiatry https://doi.org/10.1038/s41380-023-02139-3 (2023).
Roggendorf, M. et al. Rational use of diagnostic tools in hepatitis C. J. Hepatol. 24, 26–34 (1996).
Foley, K. P., Leonard, M. W. & Engel, J. D. Quantitation of RNA using the polymerase chain reaction. Trends Genet. 9, 380–385 (1993).
Article CAS PubMed Google Scholar
Vogelstein, B. & Kinzler, K. W. Digital PCR. Proc. Natl. Acad. Sci. USA 96, 9236–9241 (1999).
Article CAS PubMed PubMed Central Google Scholar
Kojabad, A. A. et al. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J. Med. Virol. 93, 4182–4197 (2021).
Article CAS PubMed PubMed Central Google Scholar
Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 (2019).
Article CAS PubMed Google Scholar
Zhou, Y. et al. Encoding method of single-cell spatial transcriptomics sequencing. Int. J. Biol. Sci. 16, 2663–2674 (2020).
Article CAS PubMed PubMed Central Google Scholar
Bagheri-Hosseinabadi, Z. et al. The relationship between serum levels of interleukin-2 and IL-8 with circulating microRNA-10b in patients with COVID-19. Iran J. Immunol. 18, 65–73 (2021).
Parray, A. et al. SnoRNAs and miRNAs networks underlying COVID-19 disease severity. Vaccines 9, 1056 (2021).
Article CAS PubMed PubMed Central Google Scholar
Agwa, S. H. A. et al. In silico identification and clinical validation of a novel long non-coding RNA/mRNA/miRNA molecular network for potential biomarkers for discriminating SARS CoV-2 infection severity. Cells 10, 3098 (2021).
Article CAS PubMed PubMed Central Google Scholar
Liu, X. et al. SARS-CoV-2 causes a significant stress response mediated by small RNAs in the blood of COVID-19 patients. Mol. Ther. Nucleic Acids 27, 751–762 (2022).
Article CAS PubMed Google Scholar
Wu, Y. et al. A study of differential circRNA and lncRNA expressions in COVID-19-infected peripheral blood. Sci. Rep. 11, 7991 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wu, W. et al. Changes of small non-coding RNAs by severe acute respiratory syndrome coronavirus 2 infection. Front. Mol. Biosci. 9, 821137 (2021).
Rodrigues, A. C. et al. NEAT1 and MALAT1 are highly expressed in saliva and nasopharyngeal swab samples of COVID-19 patients. Mol. Oral. Microbiol. 36, 291–294 (2021).
Article CAS PubMed PubMed Central Google Scholar
McDonald, J. T. et al. Role of miR-2392 in driving SARS-CoV-2 infection. Cell Rep. 37, 109839 (2021).
Article CAS PubMed PubMed Central Google Scholar
Mi, B. et al. SARS-CoV-2-induced overexpression of miR-4485 suppresses osteogenic differentiation and impairs fracture healing. Int. J. Biol. Sci. 17, 1277–1288 (2021).
Article CAS PubMed PubMed Central Google Scholar
Reinhold, D. et al. The brain reacting to COVID-19: analysis of the cerebrospinal fluid proteome, RNA and inflammation. J. Neuroinflammation 20, 30 (2023).
Comments (0)