Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399:629–55.
Kariyawasam RM, Julien DA, Jelinski DC, Larose SL, Rennert-May E, Conly JM, et al. Antimicrobial resistance (AMR) in COVID-19 patients: a systematic review and meta-analysis (November 2019–June 2021). Antimicrob Resist Infect Control. 2022;11:45.
Article PubMed PubMed Central Google Scholar
Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, et al. Antimicrobial peptides: a New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol. 2021;11:668632.
Article CAS PubMed PubMed Central Google Scholar
Luo Y, Song Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and Antibiofilm activities. IJMS. 2021;22:11401.
Article CAS PubMed PubMed Central Google Scholar
Le C-F, Fang C-M, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother. 2017;61:e02340-02316.
Article CAS PubMed PubMed Central Google Scholar
Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2016;44:D1094-1097.
Article CAS PubMed Google Scholar
Hoffmann JA. The immune response of Drosophila. Nature. 2003;426:33–8.
Article CAS PubMed Google Scholar
Stączek S, Cytryńska M, Zdybicka-Barabas A. Unraveling the role of antimicrobial peptides in insects. IJMS. 2023;24:5753.
Article PubMed PubMed Central Google Scholar
Bruno D, Montali A, Mastore M, Brivio MF, Mohamed A, Tian L, et al. Insights into the Immune response of the black soldier fly larvae to Bacteria. Front Immunol. 2021;12:745160.
Article CAS PubMed PubMed Central Google Scholar
Tang Q, Xu E, Wang Z, Xiao M, Cao S, Hu S, et al. Dietary Hermetia illucens Larvae Meal improves growth performance and intestinal barrier function of weaned pigs under the Environment of Enterotoxigenic Escherichia coli K88. Front Nutr. 2022;8:812011.
Article PubMed PubMed Central Google Scholar
Elhag O, Zhou D, Song Q, Soomro AA, Cai M, Zheng L, et al. Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L). PLoS One. 2017;12:e0169582.
Article PubMed PubMed Central Google Scholar
Li B, Yang N, Wang X, Hao Y, Mao R, Li Z, et al. An enhanced variant designed from DLP4 cationic peptide against Staphylococcus aureus CVCC 546. Front Microbiol. 2020;11:1057.
Article PubMed PubMed Central Google Scholar
Li Z, Mao R, Teng D, Hao Y, Chen H, Wang X, et al. Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus. Sci Rep. 2017;7:12124.
Article PubMed PubMed Central Google Scholar
Moretta A, Salvia R, Scieuzo C, Di Somma A, Vogel H, Pucci P, et al. A bioinformatic study of antimicrobial peptides identified in the black soldier fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Sci Rep. 2020;10:16875.
Article CAS PubMed PubMed Central Google Scholar
Park S-I, Kim J-W, Yoe SM. Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev Comp Immunol. 2015;52:98–106.
Article CAS PubMed Google Scholar
Park S-I, Yoe SM. Defensin-like peptide3 from black solder fly: identification, characterization, and key amino acids for anti-gram-negative bacteria: defensin-like peptide3 from H. Illucens. Entomol Res. 2017;47:41–7.
Park S-I, Yoe SM. A novel cecropin-like peptide from black soldier fly, Hermetia illucens: isolation, structural and functional characterization: a cecropin-like peptide from H. Illucens. Entomol Res. 2017;47:115–24.
Shin HS, Park S-I. Novel attacin from Hermetia illucens: cDNA cloning, characterization, and antibacterial properties. Prep Biochem Biotechnol. 2019;49:279–85.
Article CAS PubMed Google Scholar
Xu J, Luo X, Fang G, Zhan S, Wu J, Wang D, et al. Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm. Bombyx mori Insect Biochem Mol Biol. 2020;127:103487.
Article CAS PubMed Google Scholar
Koutsos E, Modica B, Freel T. Immunomodulatory potential of black soldier fly larvae: applications beyond nutrition in animal feeding programs. Translational Anim Sci. 2022;6: txac084.
Vogel H, Müller A, Heckel DG, Gutzeit H, Vilcinskas A. Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev Comp Immunol. 2018;78:141–8.
Article CAS PubMed Google Scholar
Scieuzo C, Giglio F, Rinaldi R, Lekka ME, Cozzolino F, Monaco V, et al. In Vitro evaluation of the antibacterial activity of the peptide fractions extracted from the Hemolymph of Hermetia illucens (Diptera: Stratiomyidae). Insects. 2023;14: 464.
Article PubMed PubMed Central Google Scholar
Buonocore F, Fausto AM, Della Pelle G, Roncevic T, Gerdol M, Picchietti S. Attacins: a promising class of insect antimicrobial peptides. Antibiot (Basel). 2021;10:212.
The UniProt Consortium, Bateman A, Martin M-J, Orchard S, Magrane M, Agivetova R, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480-489.
Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci. 2021;78:4259–82.
Article CAS PubMed PubMed Central Google Scholar
Schulz GE. The structure of bacterial outer membrane proteins. Biochim et Biophys Acta (BBA) - Biomembr. 2002;1565:308–17.
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem. 2020;295:10340–67.
Article CAS PubMed PubMed Central Google Scholar
MacDonald IA, Kuehn MJ. Stress-Induced outer membrane vesicle production by Pseudomonas aeruginosa. J Bacteriol. 2013;195:2971–81.
Article CAS PubMed PubMed Central Google Scholar
Minami M, Takase H. Comparative investigation of alternative negative staining reagents in bacterial morphological study. JBM. 2017;05:17–24.
Monahan LG, Turnbull L, Osvath SR, Birch D, Charles IG, Whitchurch CB. Rapid conversion of Pseudomonas Aeruginosato a spherical cell morphotype facilitates tolerance to carbapenems and penicillins but increases susceptibility to antimicrobial peptides. Antimicrob Agents Chemother. 2014;58:1956–62.
Article PubMed PubMed Central Google Scholar
Mohamed Z, Shin J-H, Ghosh S, Sharma AK, Pinnock F, Bint E, Naser Farnush S, et al. Clinically relevant bacterial outer membrane models for antibiotic screening applications. ACS Infect Dis. 2021;7:2707–22.
Article CAS PubMed Google Scholar
Pitsalidis C, Pappa A, Porel M, Artim CM, Faria GC, Duong DD, et al. Biomimetic electronic devices for measuring bacterial membrane disruption. Adv Mater. 2018;30:1803130.
Reynolds D, Kollef M. The epidemiology and Pathogenesis and treatment of Pseudomonas aeruginosa Infections: an update. Drugs. 2021;81:2117–31.
Article CAS PubMed PubMed Central Google Scholar
Vincent J-L, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, et al. Prevalence and outcomes of Infection among patients in Intensive Care Units in 2017. JAMA. 2020;323:1478.
Article PubMed PubMed Central Google Scholar
Wickremasinghe H, Yu HH, Azad MAK, Zhao J, Bergen PJ, Velkov T, et al. Clinically relevant concentrations of Polymyxin B and Meropenem synergistically kill Multidrug-Resistant Pseudomonas aeruginosa and minimize biofilm formation. Antibiotics. 2021;10: 405.
Article CAS PubMed PubMed Central Google Scholar
Mikkelsen H, McMullan R, Filloux A. The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One. 2011;6:e29113.
Article CAS PubMed PubMed Central Google Scholar
Moretta A, Scieuzo C, Salvia R, Popović ŽD, Sgambato A, Falabella P. Tools in the era of Multidrug Resistance in
Comments (0)