Extreme trophic tales: deciphering bacterial diversity and potential functions in oligotrophic and hypereutrophic lakes

Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, et al. Lakes as sentinels of climate change. Limnol Oceanogr. 2009;54(6):2283–97. https://doi.org/10.4319/lo.2009.54.6_part_2.2283.

Article  PubMed  PubMed Central  Google Scholar 

Adrian R, Hessen DO, Blenckner T, Hillebrand H, Hilt S, Jeppesen E, et al. Environmental impacts—Lake ecosystems. In: Quante M, Colijn F, editors. North Sea Region Climate Change Assessment. Cham: Springer International Publishing; 2016. pp. 315–40.

Chapter  Google Scholar 

Schindler DW. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr. 2009;54(6):2349–58.

Article  CAS  Google Scholar 

Zhang X, Li B, Xu H, Wells M, Tefsen B, Qin B. Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Res. 2019;151:500–14. https://doi.org/10.1016/j.watres.2018.12.023.

Article  CAS  PubMed  Google Scholar 

Ding J, Cao J, Xu Q, Xi B, Su J, Gao R, et al. Spatial heterogeneity of lake eutrophication caused by physiogeographic conditions: an analysis of 143 lakes in China. J Environ Sci. 2015;30:140–7. https://doi.org/10.1016/j.jes.2014.07.029.

Article  CAS  Google Scholar 

Wang Y, Guo M, Li X, Liu G, Hua Y, Zhao J, et al. Shifts in microbial communities in shallow lakes depending on trophic states: feasibility as an evaluation index for eutrophication. Ecol Indic. 2022;136:108691. https://doi.org/10.1016/j.ecolind.2022.108691.

Article  Google Scholar 

Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75(1):14–49. doi: Doi 10.1128/Mmbr.00028 – 10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tandon K, Yang S-H, Wan M-T, Yang C-C, Baatar B, Chiu C-Y, et al. Bacterial community in water and air of two sub-alpine lakes in Taiwan. Microbes Environ. 2018;33(2):120–6. https://doi.org/10.1264/jsme2.ME17148.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shang Y, Wu X, Wang X, Wei Q, Ma S, Sun G, et al. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. Sci Total Environ. 2022;805:150294. https://doi.org/10.1016/j.scitotenv.2021.150294.

Article  CAS  PubMed  Google Scholar 

Ji B, Liang J, Ma Y, Zhu L, Liu Y. Bacterial community and eutrophic index analysis of the East Lake. Environ Pollut. 2019;252:682–8. https://doi.org/10.1016/j.envpol.2019.05.138.

Article  CAS  PubMed  Google Scholar 

Chrost RJ, Koton M, Siuda W. Bacterial secondary production and bacterial biomass in four mazurian lakes of differing trophic status. Pol J Environ Stud. 2000;9(4):255–66.

CAS  Google Scholar 

Feng C, Jia J, Wang C, Han M, Dong C, Huo B, et al. Phytoplankton and bacterial community structure in two Chinese lakes of different trophic status. Microorganisms. 2019;7(12):621. https://doi.org/10.3390/microorganisms7120621.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang W, Chen X, Jiang X, Zheng BH. Characterization of sediment bacterial communities in plain lakes with different trophic statuses. Microbiologyopen. 2017;6(5). https://doi.org/10.1002/mbo3.503.

Ren Z, Qu XD, Peng WQ, Yu Y, Zhang M. Functional properties of bacterial communities in water and sediment of the eutrophic river-lake system of Poyang Lake, China. Peerj. 2019;7. https://doi.org/10.7717/peerj.7318.

Kiersztyn B, Chróst R, Kaliński T, Siuda W, Bukowska A, Kowalczyk G, et al. Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Sci Rep. 2019;9(1):11144. https://doi.org/10.1038/s41598-019-47577-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang W, Zheng C, Zheng Z, Wei Y, Lu K, Zhu J. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability. Ecotox Environ Safe. 2018;156:366–74. https://doi.org/10.1016/j.ecoenv.2018.03.043.

Article  CAS  Google Scholar 

Shen Z, Xie G, Yu B, Zhang Y, Shao K, Gong Y, et al. Eutrophication diminishes bacterioplankton functional dissimilarity and network complexity while enhancing stability: implications for the management of eutrophic lakes. J Environ Manage. 2024;352:120119. https://doi.org/10.1016/j.jenvman.2024.120119.

Article  CAS  PubMed  Google Scholar 

Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res. 2011;45(5):1973–83. https://doi.org/10.1016/j.watres.2010.09.018.

Article  CAS  PubMed  Google Scholar 

Ta Dang T, Bui Quoc L, Le Minh T, Harada M, Hibamatsu K, Tabata T. Eutrophication status of lakes in Inner Hanoi and a case study of Cu Chinh Lake. J Fac Agric Kyushu Univ. 2021;66(1):97–104.

Google Scholar 

Xie G, Tang X, Gong Y, Shao K, Gao G. How do planktonic particle collection methods affect bacterial diversity estimates and community composition in oligo-, meso- and eutrophic lakes? Front Microbiol. 2020;11:593589. https://doi.org/10.3389/fmicb.2020.593589.

Article  PubMed  PubMed Central  Google Scholar 

Yanez-Montalvo A, Aguila B, Gómez-Acata ES, Guerrero-Jacinto M, Oseguera LA, Falcón LI, et al. Shifts in water column microbial composition associated to lakes with different trophic conditions: Lagunas De Montebello National Park, Chiapas, México. PeerJ. 2022;10:e13999. https://doi.org/10.7717/peerj.13999.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji B, Qin H, Guo S, Chen W, Zhang X, Liang J. Bacterial communities of four adjacent fresh lakes at different trophic status. Ecotoxicol Environ Saf. 2018;157:388–94. https://doi.org/10.1016/j.ecoenv.2018.03.086.

Article  CAS  PubMed  Google Scholar 

Montoya JM, Pimm SL, Sole RV. Ecological networks and their fragility. Nature. 2006;442(7100):259–64. https://doi.org/10.1038/nature04927.

Article  CAS  PubMed  Google Scholar 

Mougi A, Kondoh M. Diversity of interaction types and ecological community stability. Science. 2012;337(6092):349–51. https://doi.org/10.1126/science.1220529.

Article  CAS  PubMed  Google Scholar 

Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10(8):538–50. https://doi.org/10.1038/nrmicro2832.

Article  CAS  PubMed  Google Scholar 

Allesina S, Levine JM. A competitive network theory of species diversity. Proc Natl Acad Sci U S A. 2011;108(14):5638–42. https://doi.org/10.1073/pnas.1014428108.

Article  PubMed  PubMed Central  Google Scholar 

Huelsmann M, Ackermann M. Community instability in the microbial world. Science. 2022;378(6615):29–30. https://doi.org/10.1126/science.ade2516.

Article  CAS  PubMed  Google Scholar 

Jiao S, Lu YH, Wei GH. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob Change Biol. 2022;28(1):140–53. https://doi.org/10.1111/gcb.15917.

Article  CAS  Google Scholar 

Kara EL, Hanson PC, Hu YH, Winslow L, McMahon KD. A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, WI, USA. ISME J. 2013;7(3):680–4. https://doi.org/10.1038/ismej.2012.118.

Article  PubMed  Google Scholar 

Mo Y, Peng F, Jeppesen E, Gamfeldt L, Xiao P, Al MA, et al. Microbial network complexity drives non-linear shift in biodiversity-nutrient cycling in a saline urban reservoir. Sci Total Environ. 2022;850:158011. https://doi.org/10.1016/j.scitotenv.2022.158011.

Article  CAS  PubMed  Google Scholar 

Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Chang. 2021;11(4):343–8.

Comments (0)

No login
gif