Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, et al. Lakes as sentinels of climate change. Limnol Oceanogr. 2009;54(6):2283–97. https://doi.org/10.4319/lo.2009.54.6_part_2.2283.
Article PubMed PubMed Central Google Scholar
Adrian R, Hessen DO, Blenckner T, Hillebrand H, Hilt S, Jeppesen E, et al. Environmental impacts—Lake ecosystems. In: Quante M, Colijn F, editors. North Sea Region Climate Change Assessment. Cham: Springer International Publishing; 2016. pp. 315–40.
Schindler DW. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr. 2009;54(6):2349–58.
Zhang X, Li B, Xu H, Wells M, Tefsen B, Qin B. Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Res. 2019;151:500–14. https://doi.org/10.1016/j.watres.2018.12.023.
Article CAS PubMed Google Scholar
Ding J, Cao J, Xu Q, Xi B, Su J, Gao R, et al. Spatial heterogeneity of lake eutrophication caused by physiogeographic conditions: an analysis of 143 lakes in China. J Environ Sci. 2015;30:140–7. https://doi.org/10.1016/j.jes.2014.07.029.
Wang Y, Guo M, Li X, Liu G, Hua Y, Zhao J, et al. Shifts in microbial communities in shallow lakes depending on trophic states: feasibility as an evaluation index for eutrophication. Ecol Indic. 2022;136:108691. https://doi.org/10.1016/j.ecolind.2022.108691.
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75(1):14–49. doi: Doi 10.1128/Mmbr.00028 – 10.
Article CAS PubMed PubMed Central Google Scholar
Tandon K, Yang S-H, Wan M-T, Yang C-C, Baatar B, Chiu C-Y, et al. Bacterial community in water and air of two sub-alpine lakes in Taiwan. Microbes Environ. 2018;33(2):120–6. https://doi.org/10.1264/jsme2.ME17148.
Article CAS PubMed PubMed Central Google Scholar
Shang Y, Wu X, Wang X, Wei Q, Ma S, Sun G, et al. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. Sci Total Environ. 2022;805:150294. https://doi.org/10.1016/j.scitotenv.2021.150294.
Article CAS PubMed Google Scholar
Ji B, Liang J, Ma Y, Zhu L, Liu Y. Bacterial community and eutrophic index analysis of the East Lake. Environ Pollut. 2019;252:682–8. https://doi.org/10.1016/j.envpol.2019.05.138.
Article CAS PubMed Google Scholar
Chrost RJ, Koton M, Siuda W. Bacterial secondary production and bacterial biomass in four mazurian lakes of differing trophic status. Pol J Environ Stud. 2000;9(4):255–66.
Feng C, Jia J, Wang C, Han M, Dong C, Huo B, et al. Phytoplankton and bacterial community structure in two Chinese lakes of different trophic status. Microorganisms. 2019;7(12):621. https://doi.org/10.3390/microorganisms7120621.
Article CAS PubMed PubMed Central Google Scholar
Huang W, Chen X, Jiang X, Zheng BH. Characterization of sediment bacterial communities in plain lakes with different trophic statuses. Microbiologyopen. 2017;6(5). https://doi.org/10.1002/mbo3.503.
Ren Z, Qu XD, Peng WQ, Yu Y, Zhang M. Functional properties of bacterial communities in water and sediment of the eutrophic river-lake system of Poyang Lake, China. Peerj. 2019;7. https://doi.org/10.7717/peerj.7318.
Kiersztyn B, Chróst R, Kaliński T, Siuda W, Bukowska A, Kowalczyk G, et al. Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Sci Rep. 2019;9(1):11144. https://doi.org/10.1038/s41598-019-47577-8.
Article CAS PubMed PubMed Central Google Scholar
Yang W, Zheng C, Zheng Z, Wei Y, Lu K, Zhu J. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability. Ecotox Environ Safe. 2018;156:366–74. https://doi.org/10.1016/j.ecoenv.2018.03.043.
Shen Z, Xie G, Yu B, Zhang Y, Shao K, Gong Y, et al. Eutrophication diminishes bacterioplankton functional dissimilarity and network complexity while enhancing stability: implications for the management of eutrophic lakes. J Environ Manage. 2024;352:120119. https://doi.org/10.1016/j.jenvman.2024.120119.
Article CAS PubMed Google Scholar
Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res. 2011;45(5):1973–83. https://doi.org/10.1016/j.watres.2010.09.018.
Article CAS PubMed Google Scholar
Ta Dang T, Bui Quoc L, Le Minh T, Harada M, Hibamatsu K, Tabata T. Eutrophication status of lakes in Inner Hanoi and a case study of Cu Chinh Lake. J Fac Agric Kyushu Univ. 2021;66(1):97–104.
Xie G, Tang X, Gong Y, Shao K, Gao G. How do planktonic particle collection methods affect bacterial diversity estimates and community composition in oligo-, meso- and eutrophic lakes? Front Microbiol. 2020;11:593589. https://doi.org/10.3389/fmicb.2020.593589.
Article PubMed PubMed Central Google Scholar
Yanez-Montalvo A, Aguila B, Gómez-Acata ES, Guerrero-Jacinto M, Oseguera LA, Falcón LI, et al. Shifts in water column microbial composition associated to lakes with different trophic conditions: Lagunas De Montebello National Park, Chiapas, México. PeerJ. 2022;10:e13999. https://doi.org/10.7717/peerj.13999.
Article CAS PubMed PubMed Central Google Scholar
Ji B, Qin H, Guo S, Chen W, Zhang X, Liang J. Bacterial communities of four adjacent fresh lakes at different trophic status. Ecotoxicol Environ Saf. 2018;157:388–94. https://doi.org/10.1016/j.ecoenv.2018.03.086.
Article CAS PubMed Google Scholar
Montoya JM, Pimm SL, Sole RV. Ecological networks and their fragility. Nature. 2006;442(7100):259–64. https://doi.org/10.1038/nature04927.
Article CAS PubMed Google Scholar
Mougi A, Kondoh M. Diversity of interaction types and ecological community stability. Science. 2012;337(6092):349–51. https://doi.org/10.1126/science.1220529.
Article CAS PubMed Google Scholar
Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10(8):538–50. https://doi.org/10.1038/nrmicro2832.
Article CAS PubMed Google Scholar
Allesina S, Levine JM. A competitive network theory of species diversity. Proc Natl Acad Sci U S A. 2011;108(14):5638–42. https://doi.org/10.1073/pnas.1014428108.
Article PubMed PubMed Central Google Scholar
Huelsmann M, Ackermann M. Community instability in the microbial world. Science. 2022;378(6615):29–30. https://doi.org/10.1126/science.ade2516.
Article CAS PubMed Google Scholar
Jiao S, Lu YH, Wei GH. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob Change Biol. 2022;28(1):140–53. https://doi.org/10.1111/gcb.15917.
Kara EL, Hanson PC, Hu YH, Winslow L, McMahon KD. A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, WI, USA. ISME J. 2013;7(3):680–4. https://doi.org/10.1038/ismej.2012.118.
Mo Y, Peng F, Jeppesen E, Gamfeldt L, Xiao P, Al MA, et al. Microbial network complexity drives non-linear shift in biodiversity-nutrient cycling in a saline urban reservoir. Sci Total Environ. 2022;850:158011. https://doi.org/10.1016/j.scitotenv.2022.158011.
Article CAS PubMed Google Scholar
Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Chang. 2021;11(4):343–8.
Comments (0)