Age-related changes in geometry and transparency of human crystalline lens revealed by optical signal discontinuity zones in swept-source OCT images

Rich W, Reilly MA. A review of lens biomechanical contributions to presbyopia. Curr Eye Res. 2023;48(2):182–94.

Article  PubMed  Google Scholar 

Bron AJ, Vrensen GFJM, Koretz J, Maraini G, Harding JJ. The ageing lens. Ophthalmologica. 2000;214(1):86–104.

Article  CAS  PubMed  Google Scholar 

Augusteyn RC. On the growth and internal structure of the human lens. Exp Eye Res. 2010;90(6):643–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bassnett S, Shi Y, Vrensen GFJM. Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc B: Biol Sci. 2011;366(1568):1250–64.

Article  Google Scholar 

Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc B: Biol Sci. 2011;366(1568):1278–92.

Article  CAS  Google Scholar 

Cook CA, Koretz JF, Pfahnl A, Hyun J, Kaufman PL. Aging of the human crystalline lens and anterior segment. Vis Res. 1994;34(22):2945–54.

Article  CAS  PubMed  Google Scholar 

Dubbelman M, Van der Heijde GL. The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox. Vis Res. 2001;41(14):1867–77.

Article  CAS  PubMed  Google Scholar 

Dubbelman M, Van der Heijde GL, Weeber HA. Change in shape of the aging human crystalline lens with accommodation. Vis Res. 2005;45(1):117–32.

Article  CAS  PubMed  Google Scholar 

Dubbelman M, Van der Heijde GL, Weeber HA. The thickness of the aging human lens obtained from corrected scheimpflug images. Optom Vis Sci. 2001;78(6):411–6.

Article  CAS  PubMed  Google Scholar 

Alió JL, Schimchak P, Negri HP, Montés-Micó R. Crystalline lens optical dysfunction through aging. Ophthalmology. 2005;112(11):2022–9.

Article  PubMed  Google Scholar 

Atchison DA, Markwell EL, Kasthurirangan S, Pope JM, Smith G, Swann PG. Age-related changes in optical and biometric characteristics of emmetropic eyes. J Vis. 2008;8(4):29.

Article  Google Scholar 

Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation. Invest Ophthalmol Vis Sci. 2008;49(6):2531–40.

Article  PubMed  Google Scholar 

Pierscionek B, Bahrami M, Hoshino M, Uesugi K, Regini J, Yagi N. The eye lens: age-related trends and individual variations in refractive index and shape parameters. Oncotarget. 2015;6(31):30532–44.

Article  PubMed  PubMed Central  Google Scholar 

Besner S, Scarcelli G, Pineda R, Yun SH. In vivo Brillouin analysis of the aging crystalline lens. Invest Ophthalmol Vis Sci. 2016;57(13):5093–100.

Article  PubMed  PubMed Central  Google Scholar 

Bahrami M, Heidari A, Pierscionek BK. Alteration in refractive index profile during accommodation based on mechanical modelling. Biomed Opt Express. 2015;7(1):99–110.

Article  PubMed  PubMed Central  Google Scholar 

Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J Vis. 2011;11(3):19.

Article  PubMed  Google Scholar 

Dubbelman M, Van der Heijde GL, Weeber HA, Vrensen GF. Changes in the internal structure of the human crystalline lens with age and accommodation. Vision Res. 2003;43(22):2363–75.

Article  CAS  PubMed  Google Scholar 

Bahrami M, Hoshino M, Pierscionek B, Yagi N, Regini J, Uesugi K. Optical properties of the lens: an explanation for the zones of discontinuity. Exp Eye Res. 2014;124:93–9.

Article  CAS  PubMed  Google Scholar 

Koretz JF, Cook CA, Kuszak JR. The zones of discontinuity in the human lens: development and distribution with age. Vis Res. 1994;34(22):2955–62.

Article  CAS  PubMed  Google Scholar 

Sparrow JM, Bron AJ, Brown NA, Ayliffe W, Hill AR. The Oxford Clinical Cataract Classification and Grading System. Int Ophthalmol. 1986;9(4):207–25.

Article  CAS  PubMed  Google Scholar 

Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography—principles and applications. Rep Prog Phys. 2003;66(2):239–303.

Article  Google Scholar 

Bouma BE, de Boer JF, Huang D, Jang IK, Yonetsu T, Leggett CL, et al. Optical coherence tomography. Nat Rev Methods Primers. 2022;2(1):79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uhlhorn SR, Borja D, Manns F, Parel JM. Refractive index measurement of the isolated crystalline lens using optical coherence tomography. Vision Res. 2008;48(27):2732–8.

Article  PubMed  PubMed Central  Google Scholar 

Richdale K, Bullimore MA, Zadnik K. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic Physiol Opt. 2008;28(5):441–7.

Article  PubMed  PubMed Central  Google Scholar 

de Castro A, Siedlecki D, Borja D, Uhlhorn S, Parel JM, Manns F, et al. Age-dependent variation of the gradient index profile in human crystalline lenses. J Mod Opt. 2011;58(19–20):1781–7.

Article  PubMed  PubMed Central  Google Scholar 

Neri A, Ruggeri M, Protti A, Leaci R, Gandolfi SA, Macaluso C. Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography. J Cataract Refract Surg. 2015;41(3):501–10.

Article  PubMed  PubMed Central  Google Scholar 

Ruggeri M, de Freitas C, Williams S, Hernandez VM, Cabot F, Yesilirmak N, et al. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging. Biomed Opt Express. 2016;7(4):1351–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z, Qu W, Huang J, Meng Z, Li X, Zou R, et al. Effect of age and cycloplegia on the morphology of the human crystalline lens: swept-source OCT study. J Cataract Refract Surg. 2022;48(1):8–15.

Article  PubMed  Google Scholar 

Chang YC, Mesquita GM, Williams S, Gregori G, Cabot F, Ho A, et al. In vivo measurement of the human crystalline lens equivalent refractive index using extended-depth OCT. Biomed Opt Express. 2019;10(2):411–22.

Article  PubMed  PubMed Central  Google Scholar 

Martinez-Enriquez E, de Castro A, Mohamed A, Sravani NG, Ruggeri M, Manns F, et al. Age-related changes to the three-dimensional full shape of the isolated human crystalline lens. Invest Ophthalmol Vis Sci. 2020;61(4):11.

Article  PubMed  PubMed Central  Google Scholar 

Wang YH, Zhong J, Li XM. Age-related changes of lens thickness and density in different age phases. Int J Ophthalmol. 2022;15(10):1591–7.

Article  PubMed  PubMed Central  Google Scholar 

de Castro A, Benito A, Manzanera S, Mompeán J, Cañizares B, Martínez D, et al. Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2018;59(2):897–903.

Article  PubMed  Google Scholar 

Grulkowski I, Manzanera S, Cwiklinski L, Mompeán J, de Castro A, Marin JM, et al. Volumetric macro- and micro-scale assessment of crystalline lens opacities in cataract patients using long-depth-range swept source optical coherence tomography. Biomed Opt Express. 2018;9(8):3821–33.

Article  PubMed  PubMed Central  Google Scholar 

Gupta A, Ruminski D, Jimenez Villar A, Duarte Toledo R, Manzanera S, Panezai S, et al. In vivo SS-OCT imaging of crystalline lens sutures. Biomed Opt Express. 2020;11(10):5388–400.

Article  PubMed  PubMed Central  Google Scholar 

Güell JL, Pujol J, Arjona M, Diaz-Douton F, Artal P. Optical quality analysis system: instrument for objective clinical evaluation of ocular optical quality. J Cataract Refract Surg. 2004;30(7):1598–9.

Article  PubMed  Google Scholar 

Artal P, Benito A, Pérez GM, Alcón E, De Casas Á, Pujol J, et al. An objective scatter index based on double-pass retinal images of a point source to classify cataracts. PLoS One. 2011;6(2):e16823.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernández EJ, Manzanera S, Piers P, Artal P. Adaptive optics visual simulator. J Refract Surg. 2002;18(5):S634–8.

Article  PubMed  Google Scholar 

Atchison DA, Smith G. Chromatic dispersions of the ocular media of human eyes. J Opt Soc Am A. 2005;22(1):29–37.

Article  Google Scholar 

Comments (0)

No login
gif