Rich W, Reilly MA. A review of lens biomechanical contributions to presbyopia. Curr Eye Res. 2023;48(2):182–94.
Bron AJ, Vrensen GFJM, Koretz J, Maraini G, Harding JJ. The ageing lens. Ophthalmologica. 2000;214(1):86–104.
Article CAS PubMed Google Scholar
Augusteyn RC. On the growth and internal structure of the human lens. Exp Eye Res. 2010;90(6):643–54.
Article CAS PubMed PubMed Central Google Scholar
Bassnett S, Shi Y, Vrensen GFJM. Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc B: Biol Sci. 2011;366(1568):1250–64.
Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc B: Biol Sci. 2011;366(1568):1278–92.
Cook CA, Koretz JF, Pfahnl A, Hyun J, Kaufman PL. Aging of the human crystalline lens and anterior segment. Vis Res. 1994;34(22):2945–54.
Article CAS PubMed Google Scholar
Dubbelman M, Van der Heijde GL. The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox. Vis Res. 2001;41(14):1867–77.
Article CAS PubMed Google Scholar
Dubbelman M, Van der Heijde GL, Weeber HA. Change in shape of the aging human crystalline lens with accommodation. Vis Res. 2005;45(1):117–32.
Article CAS PubMed Google Scholar
Dubbelman M, Van der Heijde GL, Weeber HA. The thickness of the aging human lens obtained from corrected scheimpflug images. Optom Vis Sci. 2001;78(6):411–6.
Article CAS PubMed Google Scholar
Alió JL, Schimchak P, Negri HP, Montés-Micó R. Crystalline lens optical dysfunction through aging. Ophthalmology. 2005;112(11):2022–9.
Atchison DA, Markwell EL, Kasthurirangan S, Pope JM, Smith G, Swann PG. Age-related changes in optical and biometric characteristics of emmetropic eyes. J Vis. 2008;8(4):29.
Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation. Invest Ophthalmol Vis Sci. 2008;49(6):2531–40.
Pierscionek B, Bahrami M, Hoshino M, Uesugi K, Regini J, Yagi N. The eye lens: age-related trends and individual variations in refractive index and shape parameters. Oncotarget. 2015;6(31):30532–44.
Article PubMed PubMed Central Google Scholar
Besner S, Scarcelli G, Pineda R, Yun SH. In vivo Brillouin analysis of the aging crystalline lens. Invest Ophthalmol Vis Sci. 2016;57(13):5093–100.
Article PubMed PubMed Central Google Scholar
Bahrami M, Heidari A, Pierscionek BK. Alteration in refractive index profile during accommodation based on mechanical modelling. Biomed Opt Express. 2015;7(1):99–110.
Article PubMed PubMed Central Google Scholar
Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J Vis. 2011;11(3):19.
Dubbelman M, Van der Heijde GL, Weeber HA, Vrensen GF. Changes in the internal structure of the human crystalline lens with age and accommodation. Vision Res. 2003;43(22):2363–75.
Article CAS PubMed Google Scholar
Bahrami M, Hoshino M, Pierscionek B, Yagi N, Regini J, Uesugi K. Optical properties of the lens: an explanation for the zones of discontinuity. Exp Eye Res. 2014;124:93–9.
Article CAS PubMed Google Scholar
Koretz JF, Cook CA, Kuszak JR. The zones of discontinuity in the human lens: development and distribution with age. Vis Res. 1994;34(22):2955–62.
Article CAS PubMed Google Scholar
Sparrow JM, Bron AJ, Brown NA, Ayliffe W, Hill AR. The Oxford Clinical Cataract Classification and Grading System. Int Ophthalmol. 1986;9(4):207–25.
Article CAS PubMed Google Scholar
Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography—principles and applications. Rep Prog Phys. 2003;66(2):239–303.
Bouma BE, de Boer JF, Huang D, Jang IK, Yonetsu T, Leggett CL, et al. Optical coherence tomography. Nat Rev Methods Primers. 2022;2(1):79.
Article CAS PubMed PubMed Central Google Scholar
Uhlhorn SR, Borja D, Manns F, Parel JM. Refractive index measurement of the isolated crystalline lens using optical coherence tomography. Vision Res. 2008;48(27):2732–8.
Article PubMed PubMed Central Google Scholar
Richdale K, Bullimore MA, Zadnik K. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic Physiol Opt. 2008;28(5):441–7.
Article PubMed PubMed Central Google Scholar
de Castro A, Siedlecki D, Borja D, Uhlhorn S, Parel JM, Manns F, et al. Age-dependent variation of the gradient index profile in human crystalline lenses. J Mod Opt. 2011;58(19–20):1781–7.
Article PubMed PubMed Central Google Scholar
Neri A, Ruggeri M, Protti A, Leaci R, Gandolfi SA, Macaluso C. Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography. J Cataract Refract Surg. 2015;41(3):501–10.
Article PubMed PubMed Central Google Scholar
Ruggeri M, de Freitas C, Williams S, Hernandez VM, Cabot F, Yesilirmak N, et al. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging. Biomed Opt Express. 2016;7(4):1351–64.
Article CAS PubMed PubMed Central Google Scholar
Li Z, Qu W, Huang J, Meng Z, Li X, Zou R, et al. Effect of age and cycloplegia on the morphology of the human crystalline lens: swept-source OCT study. J Cataract Refract Surg. 2022;48(1):8–15.
Chang YC, Mesquita GM, Williams S, Gregori G, Cabot F, Ho A, et al. In vivo measurement of the human crystalline lens equivalent refractive index using extended-depth OCT. Biomed Opt Express. 2019;10(2):411–22.
Article PubMed PubMed Central Google Scholar
Martinez-Enriquez E, de Castro A, Mohamed A, Sravani NG, Ruggeri M, Manns F, et al. Age-related changes to the three-dimensional full shape of the isolated human crystalline lens. Invest Ophthalmol Vis Sci. 2020;61(4):11.
Article PubMed PubMed Central Google Scholar
Wang YH, Zhong J, Li XM. Age-related changes of lens thickness and density in different age phases. Int J Ophthalmol. 2022;15(10):1591–7.
Article PubMed PubMed Central Google Scholar
de Castro A, Benito A, Manzanera S, Mompeán J, Cañizares B, Martínez D, et al. Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2018;59(2):897–903.
Grulkowski I, Manzanera S, Cwiklinski L, Mompeán J, de Castro A, Marin JM, et al. Volumetric macro- and micro-scale assessment of crystalline lens opacities in cataract patients using long-depth-range swept source optical coherence tomography. Biomed Opt Express. 2018;9(8):3821–33.
Article PubMed PubMed Central Google Scholar
Gupta A, Ruminski D, Jimenez Villar A, Duarte Toledo R, Manzanera S, Panezai S, et al. In vivo SS-OCT imaging of crystalline lens sutures. Biomed Opt Express. 2020;11(10):5388–400.
Article PubMed PubMed Central Google Scholar
Güell JL, Pujol J, Arjona M, Diaz-Douton F, Artal P. Optical quality analysis system: instrument for objective clinical evaluation of ocular optical quality. J Cataract Refract Surg. 2004;30(7):1598–9.
Artal P, Benito A, Pérez GM, Alcón E, De Casas Á, Pujol J, et al. An objective scatter index based on double-pass retinal images of a point source to classify cataracts. PLoS One. 2011;6(2):e16823.
Article CAS PubMed PubMed Central Google Scholar
Fernández EJ, Manzanera S, Piers P, Artal P. Adaptive optics visual simulator. J Refract Surg. 2002;18(5):S634–8.
Atchison DA, Smith G. Chromatic dispersions of the ocular media of human eyes. J Opt Soc Am A. 2005;22(1):29–37.
Comments (0)