The enrichment of Fanconi anemia/homologous recombination pathway aberrations in ATM/ATR-mutated NSCLC was accompanied by unique molecular features and poor prognosis

Pilie PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019;16:81–104. https://doi.org/10.1038/s41571-018-0114-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

Article  CAS  PubMed  Google Scholar 

Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66:801–17. https://doi.org/10.1016/j.molcel.2017.05.015.

Article  CAS  PubMed  Google Scholar 

Waskiewicz E, Vasiliou M, Corcoles-Saez I, Cha RS. Cancer genome datamining and functional genetic analysis implicate mechanisms of ATM/ATR dysfunction underpinning carcinogenesis. Commun Biol. 2021;4:363. https://doi.org/10.1038/s42003-021-01884-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5:689–98. https://doi.org/10.1038/nrc1691.

Article  CAS  PubMed  Google Scholar 

Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:564601. https://doi.org/10.3389/fcell.2020.564601.

Article  PubMed  PubMed Central  Google Scholar 

Reaper PM, Griffiths MR, Long JM, Charrier JD, Maccormick S, Charlton PA, Golec JM, Pollard JR. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol. 2011;7:428–30. https://doi.org/10.1038/nchembio.573.

Article  CAS  PubMed  Google Scholar 

Middleton FK, Patterson MJ, Elstob CJ, Fordham S, Herriott A, Wade MA, McCormick A, Edmondson R, May FE, Allan JM, et al. Common cancer-associated imbalances in the DNA damage response confer sensitivity to single agent ATR inhibition. Oncotarget. 2015;6:32396–409. https://doi.org/10.1863/oncotarget.6136.

Article  PubMed  PubMed Central  Google Scholar 

Mohni KN, Thompson PS, Luzwick JW, Glick GG, Pendleton CS, Lehmann BD, Pietenpol JA, Cortez D. A synthetic lethal screen identifies DNA repair pathways that sensitize cancer cells to combined ATR inhibition and cisplatin treatments. PLoS ONE. 2015;10:e0125482. https://doi.org/10.1371/journal.pone.0125482.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim H, George E, Ragland R, Rafail S, Zhang R, Krepler C, Morgan M, Herlyn M, Brown E, Simpkins F. Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models. Clin Cancer Res. 2017;23:3097–108. https://doi.org/10.1158/1078-0432.CCR-16-2273.

Article  CAS  PubMed  Google Scholar 

Lavin MF, Yeo AJ. Clinical potential of ATM inhibitors. Mutat Res. 2020;821:111695. https://doi.org/10.1016/j.mrfmmm.2020.111695.

Article  CAS  PubMed  Google Scholar 

Barnieh FM, Loadman PM, Falconer RA. Progress towards a clinically-successful ATR inhibitor for cancer therapy. Curr Res Pharmacol Drug Discov. 2021;2:100017. https://doi.org/10.1016/j.crphar.2021.100017.

Article  PubMed  PubMed Central  Google Scholar 

Plummer R, Dean E, Arkenau HT, Redfern C, Spira AI, Melear JM, Chung KY, Ferrer-Playan J, Goddemeier T, Locatelli G, et al. A phase 1b study evaluating the safety and preliminary efficacy of berzosertib in combination with gemcitabine in patients with advanced non-small cell lung cancer. Lung Cancer. 2022;163:19–26. https://doi.org/10.1016/j.lungcan.2021.11.011.

Article  CAS  PubMed  Google Scholar 

Thomas A, Takahashi N, Rajapakse VN, Zhang X, Sun Y, Ceribelli M, Wilson KM, Zhang Y, Beck E, Sciuto L, et al. Therapeutic targeting of ATR yields durable regressions in small cell lung cancers with high replication stress. Cancer Cell. 2021;39(566–579):e567. https://doi.org/10.1016/j.ccell.2021.02.014.

Article  CAS  Google Scholar 

Telli ML, Tolaney SM, Shapiro GI, Middleton M, Lord SR, Arkenau HT, Tutt A, Abramson V, Dean E, Haddad TC, et al. Phase 1b study of berzosertib and cisplatin in patients with advanced triple-negative breast cancer. NPJ Breast Cancer. 2022;8:45. https://doi.org/10.1038/s41523-022-00406-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Konstantinopoulos PA, Cheng SC, Wahner Hendrickson AE, Penson RT, Schumer ST, Doyle LA, Lee EK, Kohn EC, Duska LR, Crispens MA, et al. Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21:957–68. https://doi.org/10.1016/S1470-2045(20)30180-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shapiro GI, Wesolowski R, Devoe C, Lord S, Pollard J, Hendriks BS, Falk M, Diaz-Padilla I, Plummer R, Yap TA. Phase 1 study of the ATR inhibitor berzosertib in combination with cisplatin in patients with advanced solid tumours. Br J Cancer. 2021;125:520–7. https://doi.org/10.1038/s41416-021-01406-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Middleton MR, Dean E, Evans TRJ, Shapiro GI, Pollard J, Hendriks BS, Falk M, Diaz-Padilla I, Plummer R. Phase 1 study of the ATR inhibitor berzosertib (formerly M6620, VX-970) combined with gemcitabine +/- cisplatin in patients with advanced solid tumours. Br J Cancer. 2021;125:510–9. https://doi.org/10.1038/s41416-021-01405-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jo U, Senatorov IS, Zimmermann A, Saha LK, Murai Y, Kim SH, Rajapakse VN, Elloumi F, Takahashi N, Schultz CW, et al. Novel and highly potent ATR inhibitor M4344 kills cancer cells with replication stress, and enhances the chemotherapeutic activity of widely used DNA damaging agents. Mol Cancer Ther. 2021;20:1431–41. https://doi.org/10.1158/1535-7163.MCT-20-1026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah PD, Wethington SL, Pagan C, Latif N, Tanyi J, Martin LP, Morgan M, Burger RA, Haggerty A, Zarrin H, et al. Combination ATR and PARP Inhibitor (CAPRI): a phase 2 study of ceralasertib plus olaparib in patients with recurrent, platinum-resistant epithelial ovarian cancer. Gynecol Oncol. 2021;163:246–53. https://doi.org/10.1016/j.ygyno.2021.08.024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harold J, Bellone S, Manavella DD, Mutlu L, McNamara B, Hartwich TMP, Zipponi M, Yang-Hartwich Y, Demirkiran C, Verzosa MS, et al. Elimusertib (BAY1895344), a novel ATR inhibitor, demonstrates in vivo activity in ATRX mutated models of uterine leiomyosarcoma. Gynecol Oncol. 2023;168:157–65. https://doi.org/10.1016/j.ygyno.2022.11.014.

Article  CAS  PubMed  Google Scholar 

Davis SL, Hartman SJ, Bagby SM, Schlaepfer M, Yacob BW, Tse T, Simmons DM, Diamond JR, Lieu CH, Leal AD, et al. ATM kinase inhibitor AZD0156 in combination with irinotecan and 5-fluorouracil in preclinical models of colorectal cancer. BMC Cancer. 2022;22:1107. https://doi.org/10.1186/s12885-022-10084-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmed Z, Tuxworth RI. The brain-penetrant ATM inhibitor, AZD1390, promotes axon regeneration and functional recovery in preclinical models of spinal cord injury. Clin Transl Med. 2022;12:e962. https://doi.org/10.1002/ctm2.962.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shu J, Wang X, Yang X, Zhao G. ATM inhibitor KU60019 synergistically sensitizes lung cancer cells to topoisomerase II poisons by multiple mechanisms. Sci Rep. 2023;13:882. https://doi.org/10.1038/s41598-023-28185-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimmermann A, Zenke FT, Chiu LY, Dahmen H, Pehl U, Fuchss T, Grombacher T, Blume B, Vassilev LT, Blaukat A. A new class of selective ATM inhibitors as combination partners of DNA double-strand break inducing cancer therapies. Mol Cancer Ther. 2022;21:859–70. https://doi.org/10.1158/1535-7163.MCT-21-0934.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li B, Qu H, Zhang J, Pan W, Liu M, Yan X, Huang X, He X, Lin D, Liu S, et al. Genomic characterization and outcome evaluation of kinome fusions in lung cancer revealed novel druggable fusions. NPJ Precis Oncol. 2021;5:81. https://doi.org/10.1038/s41698-021-00221-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Z, Yang N, Ou Q, Xiang Y, Jiang T, Wu X, Bao H, Tong X, Wang X, Shao YW, et al. Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin Cancer Res. 2018;24:3097–107. https://doi.org/10.1158/1078-0432.CCR-17-2310.

Article  CAS  PubMed  Google Scholar 

Tang WF, Wu M, Bao H, Xu Y, Lin JS, Liang Y, Zhang Y, Chu XP, Qiu ZB, Su J, et al. Timing and origins of local and distant metastases in lung cancer. J Thorac Oncol. 2021;16:1136–48. https://doi.org/10.1016/j.jtho.2021.02.023.

Article  CAS  PubMed  Google Scholar 

Li H, Shan C, Wu S, Cheng B, Fan C, Cai L, Chen Y, Shi Y, Liu K, Shao Y, et al. Genomic profiling identified novel prognostic biomarkers in Chinese midline glioma patients. Front Oncol. 2020;10:607429. https://doi.org/10.3389/fonc.2020.607429.

Article  PubMed 

Comments (0)

No login
gif