Falduto GH, Pfeiffer A, Luker A, Metcalfe DD, Olivera A. Emerging mechanisms contributing to mast cell-mediated pathophysiology with therapeutic implications. Pharmacol Ther. 2021;220:107718.
Article CAS PubMed Google Scholar
Zimmermann N, Abonia JP, Dreskin SC, Akin C, Bolton S, Happel CS, et al. Developing a standardized approach for assessing mast cells and eosinophils on tissue biopsies: A work group report of the aaaai allergic skin diseases committee. J Allergy Clin Immunol. 2021;148:964–83.
Article CAS PubMed Google Scholar
Wernersson S, Pejler G. Mast cell secretory granules: Armed for battle. Nat Rev Immunol. 2014;14:478–94.
Article CAS PubMed Google Scholar
Pal S, Nath S, Meininger CJ, Gashev AA. Emerging roles of mast cells in the regulation of lymphatic immuno-physiology. Front Immunol. 2020;11:1234.
Article CAS PubMed PubMed Central Google Scholar
Frossi B, Mion F, Tripodo C, Colombo MP, Pucillo CE. Rheostatic functions of mast cells in the control of innate and adaptive immune responses. Trends Immunol. 2017;38:648–56.
Article CAS PubMed Google Scholar
Ren Y, Lyu Y, Mereness JA, Wang S, Pang J, Mariani TJ. Rare pulmonary connective tissue type mast cells regulate lung endothelial cell angiogenesis. Am J Pathol. 2020;190:1763–73.
Article CAS PubMed PubMed Central Google Scholar
Komi DEA, Khomtchouk K, Santa Maria PL. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin Rev Allergy Immunol. 2020;58:298–312.
Article CAS PubMed Google Scholar
Gelardi M, Giancaspro R, Cassano M, Ribatti D. The underestimated role of mast cells in the pathogenesis of rhinopathies. Int Arch Allergy Immunol. 2022;183:153–9.
Cianferoni A. Non-ige-mediated anaphylaxis. J Allergy Clin Immunol. 2021;147:1123–31.
Article CAS PubMed Google Scholar
Noto CN, Hoft SG, DiPaolo RJ. Mast cells as important regulators in autoimmunity and cancer development. Front Cell Dev Biol. 2021;9:752350.
Article PubMed PubMed Central Google Scholar
Widiapradja A, Manteufel EJ, Dehlin HM, Pena J, Goldspink PH, Sharma A, et al. Regulation of cardiac mast cell maturation and function by the neurokinin-1 receptor in the fibrotic heart. Sci Rep. 2019;9:11004.
Article PubMed PubMed Central Google Scholar
Nelson M, Zhang X, Pan Z, Spechler SJ, Souza RF. Mast cell effects on esophageal smooth muscle and their potential role in eosinophilic esophagitis and achalasia. Am J Physiol Gastrointest Liver Physiol. 2021;320:G319–27.
Article CAS PubMed Google Scholar
Rujitharanawong C, Yoodee S, Sueksakit K, Peerapen P, Tuchinda P, Kulthanan K, et al. Systematic comparisons of various markers for mast cell activation in rbl-2h3 cells. Cell Tissue Res. 2022;390:413–28.
Article CAS PubMed Google Scholar
Arthur GK, Ehrhardt-Humbert LC, Snider DB, Jania C, Tilley SL, Metcalfe DD, et al. The fcepsilonribeta homologue, ms4a4a, promotes fcepsilonri signal transduction and store-operated ca(2+) entry in human mast cells. Cell Signal. 2020;71:109617.
Article CAS PubMed PubMed Central Google Scholar
Maurer M, Taube C, Schroder NWJ, Ebmeyer J, Siebenhaar F, Geldmacher A, et al. Mast cells drive ige-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immunol. 2019;144:S19–30.
Article CAS PubMed Google Scholar
Phong BL, D’Souza SJ, Baudier RL, Wu E, Immethun VE, Bauer DL, et al. Ige-activated mast cells enhance tlr4-mediated antigen-specific cd4(+) t cell responses. Sci Rep. 2021;11:9686.
Article CAS PubMed PubMed Central Google Scholar
Galli SJ. The mast cell-ige paradox: From homeostasis to anaphylaxis. Am J Pathol. 2016;186:212–24.
Article CAS PubMed PubMed Central Google Scholar
Kong ZL, Sudirman S, Lin HJ, Chen WN. In vitro anti-inflammatory effects of curcumin on mast cell-mediated allergic responses via inhibiting fcepsilonri protein expression and protein kinase c delta translocation. Cytotechnology. 2020;72:81–95.
Xie CC, Zhang BP, Wang HN, Li WY, Cai ZL, He Y, et al. Flavoring agent dihydrocoumarin alleviates ige-mediated mast cell activation and allergic inflammation. Food Funct. 2022;13:3621–31.
Article CAS PubMed Google Scholar
Monino-Romero S, Erkert L, Schmidthaler K, Diesner SC, Sallis BF, Pennington L, et al. The soluble isoform of human fcvarepsilonri is an endogenous inhibitor of ige-mediated mast cell responses. Allergy. 2019;74:236–45.
Article CAS PubMed Google Scholar
Wang X, Ilarraza R, Tancowny BP, Alam SB, Kulka M. Disrupted lipid raft shuttling of fcepsilonri by n-3 polyunsaturated fatty acid is associated with ligation of g protein-coupled receptor 120 (gpr120) in human mast cell line lad2. Front Nutr. 2020;7:597809.
Article PubMed PubMed Central Google Scholar
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-ige mediated mast cell activation. Immunol Rev. 2018;282:87–113.
Article CAS PubMed Google Scholar
Liao H, Peng X, Ge Y, Liang Y, Yin Y, Li J, et al. Novel reactivation and degranulation of mast cells. Biomed Pharmacother. 2020;127:110157.
Article CAS PubMed Google Scholar
Che D, Zheng Y, Hou Y, Du X, Jia T, Zhao Q, et al. Action of substance p and pamp(9–20) on different excitation sites of mrgprx2 induces differences in mast cell activation. Int Immunopharmacol. 2021;101:108342.
Article CAS PubMed Google Scholar
Lafleur MA, Werner J, Fort M, Lobenhofer EK, Balazs M, Goyos A. Mrgprx2 activation as a rapid, high-throughput mechanistic-based approach for detecting peptide-mediated human mast cell degranulation liabilities. J Immunotoxicol. 2020;17:110–21.
Article CAS PubMed Google Scholar
Chelombitko MA, Firsov AM, Kotova EA, Rokitskaya TI, Khailova LS, Popova LB, et al. Usnic acid as calcium ionophore and mast cells stimulator. Biochim Biophys Acta Biomembr. 2020;1862:183303.
Article CAS PubMed Google Scholar
Filho EGF, da Silva EZM, Ong HL, Swaim WD, Ambudkar IS, Oliver C, et al. Rack1 plays a critical role in mast cell secretion and ca2+ mobilization by modulating f-actin dynamics. J Cell Sci. 2021;134:jcs252585.
Article CAS PubMed PubMed Central Google Scholar
Niu L, Wei J, Li X, Jin Y, Shi X. Inhibitory activity of narirutin on rbl-2h3 cells degranulation. Immunopharmacol Immunotoxicol. 2021;43:68–76.
Article CAS PubMed Google Scholar
Huang XJ, Wang DG, Ye LC, Li J, Akhtar M, Saleem S, et al. Sodium aescinate and its bioactive components induce degranulation via oxidative stress in rbl-2h3 mast cells. Toxicol Res (Camb). 2020;9:413–24.
Buranello PAA, Barbosa-Lorenzi VC, Pinto MR, Pereira-da-Silva G, Barreira M, Jamur MC, et al. The lectin artinm activates rbl-2h3 mast cells without inducing degranulation. PLoS ONE. 2020;15:e0230633.
Article CAS PubMed PubMed Central Google Scholar
Fong-ngern K, Vinaiphat A, Thongboonkerd V. Microvillar injury in renal tubular epithelial cells induced by calcium oxalate crystal and the protective role of epigallocatechin-3-gallate. FASEB J. 2017;31:120–31.
Article CAS PubMed Google Scholar
Pongsakul N, Vinaiphat A, Chanchaem P, Fong-ngern K, Thongboonkerd V. Lamin a/c in renal tubular cells is important for tissue repair, cell proliferation, and calcium oxalate crystal adhesion, and is associated with potential crystal receptors. FASEB J. 2016;30:3368–77.
Article CAS PubMed Google Scholar
Peerapen P, Sueksakit K, Boonmark W, Yoodee S, Thongboonkerd V. Arid1a knockdown enhances carcinogenesis features and aggressiveness of caco-2 colon cancer cells: An in vitro cellular mechanism study. J Cancer. 2022;13:373–84.
Article CAS PubMed PubMed Central Google Scholar
Yoodee S, Peerapen P, Plumworasawat S, Thongboonkerd V. Arid1a knockdown in human endothelial cells directly induces angiogenesis by regulating angiopoietin-2 secretion and endothelial cell activity. Int J Biol Macromol. 2021;180:1–13.
Article CAS PubMed Google Scholar
Kritikou E, Depuydt MAC, de Vries MR, Mulder KE, Govaert AM, Smit MD, et al. Flow cytometry-based characterization of mast cells in human atherosclerosis. Cells. 2019;8:334.
Comments (0)