Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. https://doi.org/10.3322/caac.21387.
Velaei K, Samadi N, Barazvan B, Soleimani RJ. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast. 2016;30:92–100. https://doi.org/10.1016/j.breast.2016.09.002.
Walter V, Fischer C, Deutsch TM, Ersing C, Nees J, Schütz F, et al. Estrogen, progesterone, and human epidermal growth factor receptor 2 discordance between primary and metastatic breast cancer. Breast Cancer Res Treat. 2020;183(1):137–44. https://doi.org/10.1007/s10549-020-05746-8.
Article PubMed PubMed Central CAS Google Scholar
Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Trans Res. 2018;8(5):1483–507. https://doi.org/10.1007/s13346-018-0551-3.
Pe KCS, Saetung R, Yodsurang V, Chaotham C, Suppipat K, Chanvorachote P, et al. Triple-negative breast cancer influences a mixed M1/M2 macrophage phenotype associated with tumor aggressiveness. PLoS ONE. 2022;17(8):e0273044. https://doi.org/10.1371/journal.pone.0273044.
Article PubMed PubMed Central CAS Google Scholar
Nielsen SR, Schmid MC. Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm. 2017;2017:9624760. https://doi.org/10.1155/2017/9624760.
Article PubMed PubMed Central CAS Google Scholar
Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy. 2019;11(8):677–89. https://doi.org/10.2217/imt-2018-0156.
Article PubMed CAS Google Scholar
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69. https://doi.org/10.1038/nri2448.
Article PubMed PubMed Central CAS Google Scholar
Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22(13):6995. https://doi.org/10.3390/ijms22136995.
Article PubMed PubMed Central CAS Google Scholar
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12(1):76. https://doi.org/10.1186/s13045-019-0760-3.
Article PubMed PubMed Central Google Scholar
Poh AR, Ernst M. Targeting macrophages in cancer: from bench to bedside. Front Oncol. 2018;8:49. https://doi.org/10.3389/fonc.2018.00049.
Article PubMed PubMed Central Google Scholar
Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther. 2021;6(1):127. https://doi.org/10.1038/s41392-021-00506-6.
Article PubMed PubMed Central CAS Google Scholar
Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The role of macrophages in cancer development and therapy. Cancers (Basel). 2021;13(8):1946. https://doi.org/10.3390/cancers13081946.
Article PubMed CAS Google Scholar
Ming A. Chinese-English manual of common-used in traditional Chinese medicine. Guangdong, China: Publishing House of Guangdong Science & Technology; 1996.
Jędrzejewski T, Pawlikowska M, Piotrowski J, Kozak W. Protein-bound polysaccharides from Coriolus versicolor attenuate LPS-induced synthesis of pro-inflammatory cytokines and stimulate PBMCs proliferation. Immunol Lett. 2016;178:140–7. https://doi.org/10.1016/j.imlet.2016.08.013.
Article PubMed CAS Google Scholar
Jędrzejewski T, Sobocińska J, Pawlikowska M, Dzialuk A, Wrotek S. Dual effect of the extract from the fungus Coriolus versicolor on lipopolysaccharide-induced cytokine production in RAW 264.7 macrophages depending on the lipopolysaccharide concentration. J Inflamm Res. 2022;15:3599–611. https://doi.org/10.2147/JIR.S364945.
Article PubMed PubMed Central Google Scholar
Jędrzejewski T, Pawlikowska M, Sobocińska J, Wrotek S. Protein-bound polysaccharides from Coriolus versicolor fungus disrupt the crosstalk between breast cancer cells and macrophages through inhibition of angiogenic cytokines production and shifting tumour-associated macrophages from the M2 to M1 subtype. Cell Physiol Biochem. 2020;54(4):615–28. https://doi.org/10.33594/000000244.
Article PubMed CAS Google Scholar
Jędrzejewski T, Sobocińska J, Pawlikowska M, Dzialuk A, Wrotek S. Extract from the Coriolus versicolor fungus as an anti-inflammatory agent with cytotoxic properties against endothelial cells and breast cancer cells. Int J Mol Sci. 2020;21(23):9063. https://doi.org/10.3390/ijms21239063.
Article PubMed PubMed Central CAS Google Scholar
Pawlikowska M, Piotrowski J, Jędrzejewski T, Kozak W, Slominski AT, Brożyna AA. Coriolus versicolor-derived protein-bound polysaccharides trigger the caspase-independent cell death pathway in amelanotic but not melanotic melanoma cells. Phytother Res. 2020;34(1):173–83. https://doi.org/10.1002/ptr.6513.
Article PubMed CAS Google Scholar
Habtemariam S. Trametes versicolor (Synn. Coriolus versicolor) polysaccharides in cancer therapy: targets and efficacy. Biomedicines. 2020;8(5):135. https://doi.org/10.3390/biomedicines8050135.
Article PubMed PubMed Central CAS Google Scholar
Torkelson CJ, Sweet E, Martzen MR, Sasagawa M, Wenner CA, Gay J, et al. Phase 1 Clinical trial of trametes versicolor in women with breast cancer. ISRN Oncol. 2012;2012:251632. https://doi.org/10.5402/2012/251632.
Article PubMed PubMed Central Google Scholar
He Z, Lin J, He Y, Liu S. Polysaccharide-peptide from trametes versicolor: the potential medicine for colorectal cancer treatment. Biomedicines. 2022;10(11):2841. https://doi.org/10.3390/biomedicines10112841.
Article PubMed PubMed Central CAS Google Scholar
Dou H, Chang Y, Zhang L. Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Prog Mol Biol Transl Sci. 2019;163:361–81. https://doi.org/10.1016/bs.pmbts.2019.03.001.
Article PubMed CAS Google Scholar
Mantovani MS, Bellini MF, Angeli JP, Oliveira RJ, Silva AF, Ribeiro LR. β-glucans in promoting health: prevention against mutation and cancer. Mutat Res. 2008;658(3):154–61. https://doi.org/10.1016/j.mrrev.2007.07.002.
Article PubMed CAS Google Scholar
Bertani FR, Mozetic P, Fioramonti M, Iuliani M, Ribelli G, Pantano F, et al. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci Rep. 2017;7(1):8965. https://doi.org/10.1038/s41598-017-08121-8.
Article PubMed PubMed Central CAS Google Scholar
Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol. 2014;5:514. https://doi.org/10.3389/fimmu.2014.00514.
Article PubMed PubMed Central CAS Google Scholar
Kowalczewska M, Piotrowski J, Jędrzejewski T, Kozak W. Polysaccharide peptides from Coriolus versicolor exert differential immunomodulatory effects on blood lymphocytes and breast cancer cell line MCF-7 in vitro. Immunol Lett. 2016;174:37–44. https://doi.org/10.1016/j.imlet.2016.04.010.
Article PubMed CAS Google Scholar
Pawlikowska M, Jędrzejewski T, Brożyna AA, Wrotek S. Protein-bound polysaccharides from Coriolus versicolor induce RIPK1/RIPK3/MLKL-mediated necroptosis in ER-positive breast cancer and amelanotic melanoma cells. Cell Physiol Biochem. 2020;54(4):591–604. https://doi.org/10.33594/000000242.
Comments (0)