In vitro treatment of triple-negative breast cancer cells with an extract from the Coriolus versicolor mushroom changes macrophage properties related to tumourigenesis

Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. https://doi.org/10.3322/caac.21387.

Article  PubMed  Google Scholar 

Velaei K, Samadi N, Barazvan B, Soleimani RJ. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast. 2016;30:92–100. https://doi.org/10.1016/j.breast.2016.09.002.

Article  PubMed  Google Scholar 

Walter V, Fischer C, Deutsch TM, Ersing C, Nees J, Schütz F, et al. Estrogen, progesterone, and human epidermal growth factor receptor 2 discordance between primary and metastatic breast cancer. Breast Cancer Res Treat. 2020;183(1):137–44. https://doi.org/10.1007/s10549-020-05746-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Trans Res. 2018;8(5):1483–507. https://doi.org/10.1007/s13346-018-0551-3.

Article  Google Scholar 

Pe KCS, Saetung R, Yodsurang V, Chaotham C, Suppipat K, Chanvorachote P, et al. Triple-negative breast cancer influences a mixed M1/M2 macrophage phenotype associated with tumor aggressiveness. PLoS ONE. 2022;17(8):e0273044. https://doi.org/10.1371/journal.pone.0273044.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nielsen SR, Schmid MC. Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm. 2017;2017:9624760. https://doi.org/10.1155/2017/9624760.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy. 2019;11(8):677–89. https://doi.org/10.2217/imt-2018-0156.

Article  PubMed  CAS  Google Scholar 

Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69. https://doi.org/10.1038/nri2448.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22(13):6995. https://doi.org/10.3390/ijms22136995.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12(1):76. https://doi.org/10.1186/s13045-019-0760-3.

Article  PubMed  PubMed Central  Google Scholar 

Poh AR, Ernst M. Targeting macrophages in cancer: from bench to bedside. Front Oncol. 2018;8:49. https://doi.org/10.3389/fonc.2018.00049.

Article  PubMed  PubMed Central  Google Scholar 

Duan Z, Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct Target Ther. 2021;6(1):127. https://doi.org/10.1038/s41392-021-00506-6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The role of macrophages in cancer development and therapy. Cancers (Basel). 2021;13(8):1946. https://doi.org/10.3390/cancers13081946.

Article  PubMed  CAS  Google Scholar 

Ming A. Chinese-English manual of common-used in traditional Chinese medicine. Guangdong, China: Publishing House of Guangdong Science & Technology; 1996.

Google Scholar 

Jędrzejewski T, Pawlikowska M, Piotrowski J, Kozak W. Protein-bound polysaccharides from Coriolus versicolor attenuate LPS-induced synthesis of pro-inflammatory cytokines and stimulate PBMCs proliferation. Immunol Lett. 2016;178:140–7. https://doi.org/10.1016/j.imlet.2016.08.013.

Article  PubMed  CAS  Google Scholar 

Jędrzejewski T, Sobocińska J, Pawlikowska M, Dzialuk A, Wrotek S. Dual effect of the extract from the fungus Coriolus versicolor on lipopolysaccharide-induced cytokine production in RAW 264.7 macrophages depending on the lipopolysaccharide concentration. J Inflamm Res. 2022;15:3599–611. https://doi.org/10.2147/JIR.S364945.

Article  PubMed  PubMed Central  Google Scholar 

Jędrzejewski T, Pawlikowska M, Sobocińska J, Wrotek S. Protein-bound polysaccharides from Coriolus versicolor fungus disrupt the crosstalk between breast cancer cells and macrophages through inhibition of angiogenic cytokines production and shifting tumour-associated macrophages from the M2 to M1 subtype. Cell Physiol Biochem. 2020;54(4):615–28. https://doi.org/10.33594/000000244.

Article  PubMed  CAS  Google Scholar 

Jędrzejewski T, Sobocińska J, Pawlikowska M, Dzialuk A, Wrotek S. Extract from the Coriolus versicolor fungus as an anti-inflammatory agent with cytotoxic properties against endothelial cells and breast cancer cells. Int J Mol Sci. 2020;21(23):9063. https://doi.org/10.3390/ijms21239063.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pawlikowska M, Piotrowski J, Jędrzejewski T, Kozak W, Slominski AT, Brożyna AA. Coriolus versicolor-derived protein-bound polysaccharides trigger the caspase-independent cell death pathway in amelanotic but not melanotic melanoma cells. Phytother Res. 2020;34(1):173–83. https://doi.org/10.1002/ptr.6513.

Article  PubMed  CAS  Google Scholar 

Habtemariam S. Trametes versicolor (Synn. Coriolus versicolor) polysaccharides in cancer therapy: targets and efficacy. Biomedicines. 2020;8(5):135. https://doi.org/10.3390/biomedicines8050135.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Torkelson CJ, Sweet E, Martzen MR, Sasagawa M, Wenner CA, Gay J, et al. Phase 1 Clinical trial of trametes versicolor in women with breast cancer. ISRN Oncol. 2012;2012:251632. https://doi.org/10.5402/2012/251632.

Article  PubMed  PubMed Central  Google Scholar 

He Z, Lin J, He Y, Liu S. Polysaccharide-peptide from trametes versicolor: the potential medicine for colorectal cancer treatment. Biomedicines. 2022;10(11):2841. https://doi.org/10.3390/biomedicines10112841.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dou H, Chang Y, Zhang L. Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Prog Mol Biol Transl Sci. 2019;163:361–81. https://doi.org/10.1016/bs.pmbts.2019.03.001.

Article  PubMed  CAS  Google Scholar 

Mantovani MS, Bellini MF, Angeli JP, Oliveira RJ, Silva AF, Ribeiro LR. β-glucans in promoting health: prevention against mutation and cancer. Mutat Res. 2008;658(3):154–61. https://doi.org/10.1016/j.mrrev.2007.07.002.

Article  PubMed  CAS  Google Scholar 

Bertani FR, Mozetic P, Fioramonti M, Iuliani M, Ribelli G, Pantano F, et al. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci Rep. 2017;7(1):8965. https://doi.org/10.1038/s41598-017-08121-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol. 2014;5:514. https://doi.org/10.3389/fimmu.2014.00514.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kowalczewska M, Piotrowski J, Jędrzejewski T, Kozak W. Polysaccharide peptides from Coriolus versicolor exert differential immunomodulatory effects on blood lymphocytes and breast cancer cell line MCF-7 in vitro. Immunol Lett. 2016;174:37–44. https://doi.org/10.1016/j.imlet.2016.04.010.

Article  PubMed  CAS  Google Scholar 

Pawlikowska M, Jędrzejewski T, Brożyna AA, Wrotek S. Protein-bound polysaccharides from Coriolus versicolor induce RIPK1/RIPK3/MLKL-mediated necroptosis in ER-positive breast cancer and amelanotic melanoma cells. Cell Physiol Biochem. 2020;54(4):591–604. https://doi.org/10.33594/000000242.

Comments (0)

No login
gif