Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).
Article CAS PubMed Google Scholar
Shin, H. R. & Zoncu, R. The lysosome at the intersection of cellular growth and destruction. Dev. Cell 54, 226–238 (2020).
Article CAS PubMed PubMed Central Google Scholar
Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).
Article CAS PubMed Google Scholar
Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).
Article CAS PubMed PubMed Central Google Scholar
Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).
Article PubMed PubMed Central Google Scholar
Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).
Article CAS PubMed PubMed Central Google Scholar
Goul, C., Peruzzo, R. & Zoncu, R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-023-00641-8 (2023).
Bonam, S. R., Wang, F. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug. Discov. 18, 923–948 (2019).
Article CAS PubMed PubMed Central Google Scholar
Perera, R. M. & Zoncu, R. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 32, 223–253 (2016).
Article CAS PubMed PubMed Central Google Scholar
Jahn, R., Cafiso, D. C. & Tamm, L. K. Mechanisms of SNARE proteins in membrane fusion. Nat. Rev. Mol. Cell. Biol. https://doi.org/10.1038/s41580-023-00668-x (2023).
Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623–635 (2009).
Article CAS PubMed Google Scholar
Kummel, D., Herrmann, E., Langemeyer, L. & Ungermann, C. Molecular insights into endolysosomal microcompartment formation and maintenance. Biol. Chem. 404, 441–454 (2023).
Shvarev, D. et al. Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery. eLife 11, https://doi.org/10.7554/eLife.80901 (2022).
di Ronza, A. et al. CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat. Cell Biol. 20, 1370–1377 (2018).
Article PubMed PubMed Central Google Scholar
Bajaj, L. et al. A CLN6–CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer. J. Clin. Invest. 130, 4118–4132 (2020).
CAS PubMed PubMed Central Google Scholar
Braulke, T. & Bonifacino, J. S. Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614 (2009).
Article CAS PubMed Google Scholar
Li, H. et al. Structure of the human GlcNAc-1-phosphotransferase αβ subunits reveals regulatory mechanism for lysosomal enzyme glycan phosphorylation. Nat. Struct. Mol. Biol. 29, 348–356 (2022).
Article CAS PubMed PubMed Central Google Scholar
Reczek, D. et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell 131, 770–783 (2007).
Article CAS PubMed Google Scholar
Zhang, W. et al. GCAF(TMEM251) regulates lysosome biogenesis by activating the mannose-6-phosphate pathway. Nat. Commun. 13, 5351 (2022).
Article CAS PubMed PubMed Central Google Scholar
Richards, C. M. et al. The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection. Science 378, eabn5648 (2022).
Article CAS PubMed PubMed Central Google Scholar
Pechincha, C. et al. Lysosomal enzyme trafficking factor LYSET enables nutritional usage of extracellular proteins. Science 378, eabn5637 (2022).
Article CAS PubMed Google Scholar
Calcagni, A. et al. Loss of the Batten disease protein CLN3 leads to mis-trafficking of M6PR and defective autophagic-lysosomal reformation. Nat. Commun. 14, 3911 (2023).
Article CAS PubMed PubMed Central Google Scholar
Schmidtke, C. et al. Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. J. Biol. Chem. 294, 9592–9604 (2019).
Article CAS PubMed PubMed Central Google Scholar
Yasa, S. et al. CLN3 regulates endosomal function by modulating Rab7A-effector interactions. J. Cell Sci. 133, jcs234047 (2020).
Article CAS PubMed Google Scholar
Kollmann, K. et al. Mannose phosphorylation in health and disease. Eur. J. Cell Biol. 89, 117–123 (2010).
Article CAS PubMed Google Scholar
Ain, N. U. et al. Biallelic TMEM251 variants in patients with severe skeletal dysplasia and extreme short stature. Hum. Mutat. 42, 89–101 (2021).
Article CAS PubMed Google Scholar
Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 4, 27 (2018).
Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74, 69–86 (2012).
Article CAS PubMed Google Scholar
Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V. & Rubinstein, J. L. Structure of V-ATPase from the mammalian brain. Science 367, 1240–1246 (2020).
Article CAS PubMed PubMed Central Google Scholar
Vasanthakumar, T. & Rubinstein, J. L. Structure and roles of V-type ATPases. Trends Biochem. Sci. 45, 295–307 (2020).
Article CAS PubMed Google Scholar
Stransky, L. A. & Forgac, M. Amino acid availability modulates vacuolar H+-ATPase assembly. J. Biol. Chem. 290, 27360–27369 (2015).
Article CAS PubMed PubMed Central Google Scholar
Ramirez, C., Hauser, A. D., Vucic, E. A. & Bar-Sagi, D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature 576, 477–481 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kosmidis, E. et al. Regulation of the mammalian-brain V-ATPase through ultraslow mode-switching. Nature 611, 827–834 (2022).
Article CAS PubMed Google Scholar
Banerjee, S. & Kane, P. M. Regulation of V-ATPase activity and organelle pH by phosphatidylinositol phosphate lipids. Front. Cell Dev. Biol. 8, 510 (2020).
Article PubMed PubMed Central Google Scholar
Ratto, E. et al. Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly. Nat. Commun. 13, 4848 (2022).
Article CAS PubMed PubMed Central Google Scholar
Graves, A. R., Curran, P. K., Smith, C. L. & Mindell, J. A. The Cl–/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792 (2008).
Article CAS PubMed Google Scholar
Kornak, U. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215 (2001).
Article CAS PubMed Google Scholar
Kasper, D. et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24, 1079–1091 (2005).
Comments (0)