Proteomic analysis investigating kidney transplantation outcomes- a scoping review

Huang Y, Samaniego M. Preemptive kidney transplantation: has it come of age? Nephrol Ther. 2012;8(6):428–32. https://doi.org/10.1016/j.nephro.2012.06.004.

Article  PubMed  Google Scholar 

Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, Held PJ, Port FK. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341(23):1725–30. https://doi.org/10.1056/NEJM199912023412303.

Article  CAS  PubMed  Google Scholar 

Sexton DJ, O’Kelly P, Williams Y, Plant WD, Keogan M, Khalib K, Doyle B, Dorman A, Süsal C, Unterrainer C, Forde J, Power R, Smith G, Mohan P, Denton M, Magee C, de Freitas DG, Little D, O’Seaghdha CM, Conlon PJ. Progressive improvement in short-, medium- and long-term graft survival in kidney transplantation patients in Ireland - a retrospective study. Transpl Int. 2019;32(9):974–84. https://doi.org/10.1111/tri.13470.

Article  PubMed  Google Scholar 

McCaughan JA, Patterson CC, Maxwell AP, Courtney AE. Factors influencing survival after kidney transplant failure. Transplant Res. 2014;24(3):18. https://doi.org/10.1186/2047-1440-3-18.

Article  Google Scholar 

Sageshima J, Chandar J, Chen LJ, Shah R, Al Nuss A, Vincenzi P, Morsi M, Figueiro J, Vianna R, Ciancio G, Burke GW 3rd. How to deal with kidney retransplantation-second, third, fourth, and beyond. Transplantation. 2022;106(4):709–21. https://doi.org/10.1097/TP.0000000000003888.

Article  PubMed  Google Scholar 

Sussell J, Silverstein AR, Goutam P, Incerti D, Kee R, Chen CX, Batty DS Jr, Jansen JP, Kasiske BL. The economic burden of kidney graft failure in the United States. Am J Transplant. 2020;20(5):1323–33. https://doi.org/10.1111/ajt.15750.

Article  PubMed  Google Scholar 

Clayton LM, Rizzolo D, Nair V. Kidney transplant wait list: review and current trends. JAAPA. 2018;31(10):1–5. https://doi.org/10.1097/01.JAA.0000545074.86472.d4.

Article  PubMed  Google Scholar 

Sigdel TK, Salomonis N, Nicora CD, Ryu S, He J, Dinh V, Orton DJ, Moore RJ, Hsieh SC, Dai H, Thien-Vu M, Xiao W, Smith RD, Qian WJ, Camp DG 2nd, Sarwal MM. The identification of novel potential injury mechanisms and candidate biomarkers in renal allograft rejection by quantitative proteomics. Mol Cell Proteomics. 2014;13(2):621–31. https://doi.org/10.1074/mcp.M113.030577.

Article  CAS  PubMed  Google Scholar 

Schwarz A, Gwinner W, Hiss M, Radermacher J, Mengel M, Haller H. Safety and adequacy of renal transplant protocol biopsies. Am J Transplant. 2005;5(8):1992–6. https://doi.org/10.1111/j.1600-6143.2005.00988.x.

Article  PubMed  Google Scholar 

Lim M, Park BK, Lee KW, Park JB, Kim KD, Yang J, Kwon J, Jeong ES, Lee S. Two-Week Protocol Biopsy in Renal Allograft: Feasibility, Safety, and Outcomes. J Clin Med. 2022;11(3):785. https://doi.org/10.3390/jcm11030785.

Article  PubMed  PubMed Central  Google Scholar 

Quaglia M, Merlotti G, Guglielmetti G, Castellano G, Cantaluppi V. Recent advances on biomarkers of early and late kidney graft dysfunction. Int J Mol Sci. 2020;21(15):5404. https://doi.org/10.3390/ijms21155404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madden K, Janitell C, Sower D, Yang S. Prediction of BK viremia by urine viral load in renal transplant patients: An analysis of BK viral load results in paired urine and plasma samples. Transpl Infect Dis. 2018;20(5):e12952. https://doi.org/10.1111/tid.12952.

Article  CAS  PubMed  Google Scholar 

Ho J, Hirt-Minkowski P, Wilkins JA. New developments in transplant proteomics. Curr Opin Nephrol Hypertens. 2017;26(3):229–34. https://doi.org/10.1097/MNH.0000000000000319. PMID: 28221173.

Article  CAS  PubMed  Google Scholar 

Zhou W, Petricoin EF 3rd, Longo C. Mass spectrometry-based biomarker discovery. Methods Mol Biol. 2017;1606:297–311. https://doi.org/10.1007/978-1-4939-6990-6_19.

Article  CAS  PubMed  Google Scholar 

Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359(9306):572–7. https://doi.org/10.1016/S0140-6736(02)07746-2.

Article  CAS  PubMed  Google Scholar 

Kaplan SA. Boosted decision tree analysis od surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. J Urol. 2003;169(4):1620.

PubMed  Google Scholar 

Vlahou A, Schellhammer PF, Mendrinos S, Patel K, Kondylis FI, Gong L, Nasim S, Wright GL Jr. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol. 2001;158(4):1491–502. https://doi.org/10.1016/S0002-9440(10)64100-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peters MDJ, Godfrey C, McInerney P, Khalil H, Larsen P, Marnie C, Pollock D, Tricco AC, Munn Z. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid Synth. 2022;20(4):953–68.

Article  PubMed  Google Scholar 

Arksey H, O’Malley L. Scoping studies: Towards a methodological framework. Int J Soc Res Methodol Theory Pract. 2005;8:19–32.

Article  Google Scholar 

Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467–73.

Article  PubMed  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

Article  PubMed  PubMed Central  Google Scholar 

Clarke W, Silverman BC, Zhang Z, Chan DW, Klein AS, Molmenti EP. Characterization of renal allograft rejection by urinary proteomic analysis. Ann Surg. 2003;237(5):660–4. https://doi.org/10.1097/01.SLA.0000064293.57770.42. Discussion 664–5.

Article  PubMed  PubMed Central  Google Scholar 

Schaub S, Rush D, Wilkins J, Gibson IW, Weiler T, Sangster K, Nicolle L, Karpinski M, Jeffery J, Nickerson P. Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J Am Soc Nephrol. 2004;15(1):219–27. https://doi.org/10.1097/01.asn.0000101031.52826.be.

Article  CAS  PubMed  Google Scholar 

Jung HY, Lee CH, Choi JY, Cho JH, Park SH, Kim YL, Moon PG, Baek MC, Berm Park J, Hoon Kim Y, Ha Chung B, Lee SH, Kim CD. Potential urinary extracellular vesicle protein biomarkers of chronic active antibody-mediated rejection in kidney transplant recipients. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1(1138):121958. https://doi.org/10.1016/j.jchromb.2019.121958.

Article  CAS  Google Scholar 

Mertens I, Willems H, Van Loon E, Schildermans K, Boonen K, Baggerman G, Valkenborg D, Gwinner W, Anglicheau D, Essig M, Marquet P, Naesens M. Urinary protein biomarker panel for the diagnosis of antibody-mediated rejection in kidney transplant recipients. Kidney Int Rep. 2020;5(9):1448–58. https://doi.org/10.1016/j.ekir.2020.06.018.

Article  PubMed  PubMed Central  Google Scholar 

Blydt-Hansen TD, Gibson IW, Gao A, Dufault B, Ho J. Elevated urinary CXCL10-to-creatinine ratio is associated with subclinical and clinical rejection in pediatric renal transplantation. Transplantation. 2015;99(4):797–804. https://doi.org/10.1097/TP.0000000000000419.

Article  CAS  PubMed  Google Scholar 

Kanzelmeyer NK, Zürbig P, Mischak H, Metzger J, Fichtner A, Ruszai KH, Seemann T, Hansen M, Wygoda S, Krupka K, Tönshoff B, Melk A, Pape L. Urinary proteomics to diagnose chronic active antibody-mediated rejection in pediatric kidney transplantation - a pilot study. Transpl Int. 2019;32(1):28–37. https://doi.org/10.1111/tri.13363.

Article  CAS  PubMed  Google Scholar 

Sigdel TK, Kaushal A, Gritsenko M, Norbeck AD, Qian WJ, Xiao W, Camp DG 2nd, Smith RD, Sarwal MM. Shotgun proteomics identifies proteins specific for acute renal transplant rejection. Proteomics Clin Appl. 2010;4(1):32–47. https://doi.org/10.1002/prca.200900124.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hricik DE, Nickerson P, Formica RN, Poggio ED, Rush D, Newell KA, Goebel J, Gibson IW, Fairchild RL, Riggs M, Spain K, Ikle D, Bridges ND, Heeger PS, CTOT-01 consortium. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am J Transplant. 2013;13(10):2634–44. https://doi.org/10.1111/ajt.12426.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnston O, Cassidy H, O’Connell S, O’Riordan A, Gallagher W, Maguire PB, Wynne K, Cagney G, Ryan MP, Conlon PJ, McMorrow T. Identification of β2-microglobulin as a urinary biomarker for chronic allograft nephropathy using proteomic methods. Proteomics Clin Appl. 2011;5(7–8):422–31. https://doi.org/10.1002/prca.201000160.

Article  CAS  PubMed  Google Scholar 

Carreras-Planella L, Cucchiari D, Cañas L, et al. Urinary vitronectin identifies patients with high levels of fibrosis in kidney grafts. J Nephrol. 2021;34:861–74.

Article  CAS  PubMed  Google Scholar 

Cibrik DM, Warner RL, Kommareddi M, et al. Identification of a protein signature in renal allograft rejection. Proteomics Clin Appl. 2013;7:839–49.

Article  CAS  PubMed  Google Scholar 

Jacobs-Cachá C, Torres IB, López-Hellín J, et al. Fascin-1 is released from proximal tubular cells in response to calcineurin inhibitors (CNIs) and correlates with isometric vacuolization in kidney transplanted patients. Am J Transl Res. 2017;9:4173–83.

PubMed 

Comments (0)

No login
gif