Phenome-wide association study on miRNA-related sequence variants: the UK Biobank

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

Article  CAS  PubMed  Google Scholar 

Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng C, Wang Y. MicroRNAs as new players in endocrinology. Front Endocrinol. 2018;9:459.

Article  Google Scholar 

Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 2005;4(9):1179–84.

Article  CAS  PubMed  Google Scholar 

He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.

Article  CAS  PubMed  Google Scholar 

Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene. 2010;29(15):2302–8.

Article  CAS  PubMed  Google Scholar 

Ghanbari M, Ikram MA, de Looper HW, Hofman A, Erkeland SJ, Franco OH, et al. Genome-wide identification of microRNA-related variants associated with risk of Alzheimer’s disease. Sci Rep. 2016;6(1):1–9.

Article  Google Scholar 

Ghanbari M, Darweesh SK, de Looper HW, van Luijn MM, Hofman A, Ikram MA, et al. Genetic variants in microRNAs and their binding sites are associated with the risk of Parkinson disease. Hum Mutat. 2016;37(3):292–300.

Article  CAS  PubMed  Google Scholar 

Ghanbari M, Franco OH, de Looper HW, Hofman A, Erkeland SJ, Dehghan A. Genetic variations in microRNA-binding sites affect microRNA-mediated regulation of several genes associated with cardio-metabolic phenotypes. Circ Cardiovasc Genet. 2015;8(3):473–86.

Article  CAS  PubMed  Google Scholar 

Ghanbari M, Iglesias AI, Springelkamp H, van Duijn CM, Ikram MA, Dehghan A, et al. A genome-wide scan for MicroRNA-related genetic variants associated with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2017;58(12):5368–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciccacci C, Di Fusco D, Cacciotti L, Morganti R, D’Amato C, Greco C, et al. MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol. 2013;50:867–72.

Article  CAS  PubMed  Google Scholar 

Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, et al. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res. 2020;116(6):1113–24.

Article  CAS  PubMed  Google Scholar 

Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–62.

Article  CAS  PubMed  Google Scholar 

Gong J, Tong Y, Zhang H, Wang K, Hu T, Shan G, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. 2012;33(1):254–63.

Article  CAS  PubMed  Google Scholar 

Cammaerts S, Strazisar M, De Rijk P, Del Favero J. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease. Front Genet. 2015;6:186.

Article  PubMed  PubMed Central  Google Scholar 

Han M, Zheng Y. Comprehensive analysis of single nucleotide polymorphisms in human microRNAs. PLoS ONE. 2013;8(11):e78028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saunders MA, Liang H, Li W. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci. 2007;104(9):3300–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhattacharya A, Cui Y. Systematic prediction of the impacts of mutations in microRNA seed sequences. J Integr Bioinform. 2017;14(1):20170001.

Article  PubMed  PubMed Central  Google Scholar 

Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, et al. SNPs in human miRNA genes affect biogenesis and function. RNA. 2009;15(9):1640–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong J, Liu C, Liu W, Wu Y, Ma Z, Chen H, et al. An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database. 2015;2015:bav029.

Article  PubMed  PubMed Central  Google Scholar 

Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet. 2007;16(9):1124–31.

Article  CAS  PubMed  Google Scholar 

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389–402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chhichholiya Y, Suryan AK, Suman P, Munshi A, Singh S. SNPs in miRNAs and target sequences: role in cancer and diabetes. Front Genet. 2021;12:793523.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Bai R, Liu C, Ma C, Chen X, Yang J, et al. MicroRNA single-nucleotide polymorphisms and diabetes mellitus: a comprehensive review. Clin Genet. 2019;95(4):451–61.

Article  CAS  PubMed  Google Scholar 

Mustafa R, Ghanbari M, Evangelou M, Dehghan A. An enrichment analysis for cardiometabolic traits suggests non-random assignment of genes to microRNAs. Int J Mol Sci. 2018;19(11):3666.

Article  PubMed  PubMed Central  Google Scholar 

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.

Article  PubMed  PubMed Central  Google Scholar 

Biobank U. Genotyping of 500,000 UK Biobank participants. Description of sample processing workflow and preparation of DNA for genotyping. 2015; 11.

Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu C, Fu X, Xia M, Zhang Q, Gu Z, Guo A. miRNASNP-v3: a comprehensive database for SNPs and disease-related variations in miRNAs and miRNA targets. Nucleic Acids Res. 2021;49(D1):D1276–81.

Article  CAS  PubMed  Google Scholar 

Carroll RJ, Bastarache L, Denny JC. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics. 2014;30(16):2375–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei W, Bastarache LA, Carroll RJ, Marlo JE, Osterman TJ, Gamazon ER, et al. Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. PLoS ONE. 2017;12(7):e0175508.

Article  PubMed  PubMed Central  Google Scholar 

Verma A, Bradford Y, Dudek S, Lucas AM, Verma SS, Pendergrass SA, et al. A simulation study investigating power estimates in phenome-wide association studies. BMC Bioinform. 2018;19(1):120.

Article  Google Scholar 

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57(1):289–300.

Google Scholar 

Agarwal V, Bell GW, Nam J, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005.

Article  PubMed  PubMed Central  Google Scholar 

Huang H, Lin Y, Li J, Huang K, Shrestha S, Hong H, et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. 2020;48(D1):D148–54.

CAS  PubMed  Google Scholar 

Mustafa R, Mens M, van Hilten A, Huang J, Roshchupkin GV, Huan T, et al. An atlas of genetic regulation and disease associations of microRNAs. medRxiv. 2022.

Nikpay M, Beehler K, Valsesia A, Hager J, Harper M, Dent

Comments (0)

No login
gif