Sideroflexin family genes were dysregulated and associated with tumor progression in prostate cancers

Tifoun N, De Las Heras JM, Guillaume A, Bouleau S, Mignotte B, Le Floch N. Insights into the roles of the sideroflexins/SLC56 family in iron homeostasis and iron-sulfur biogenesis. Biomedicines. 2021;9(2):103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Attwood MM, Schioth HB. Characterization of five transmembrane proteins: with focus on the tweety, sideroflexin, and YIP1 domain families. Front Cell Dev Biol. 2021;9:708754.

Article  PubMed  PubMed Central  Google Scholar 

Kory N, Wyant GA, Prakash G, Uit de Bos J, Bottanelli F, Pacold ME, Chan SH, Lewis CA, Wang T, Keys HR, et al. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science. 2018;362:6416.

Article  Google Scholar 

Paul BT, Tesfay L, Winkler CR, Torti FM, Torti SV. Sideroflexin 4 affects Fe-S cluster biogenesis, iron metabolism, mitochondrial respiration and heme biosynthetic enzymes. Sci Rep. 2019;9(1):19634.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jackson TD, Crameri JJ, Muellner-Wong L, Frazier AE, Palmer CS, Formosa LE, Hock DH, Fujihara KM, Stait T, Sharpe AJ, et al. Sideroflexin 4 is a complex I assembly factor that interacts with the MCIA complex and is required for the assembly of the ND2 module. Proc Natl Acad Sci USA. 2022;119(13):e2115566119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tesfay L, Paul BT, Hegde P, Brewer M, Habbani S, Jellison E, Moore T, Wu H, Torti SV, Torti FM. Complementary anti-cancer pathways triggered by inhibition of sideroflexin 4 in ovarian cancer. Sci Rep. 2022;12(1):19936.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Meng L, Liu Y, Jiang J, He Z, Qin J, Wang C, Yang M, He K, Yang J, et al. Sfxn5 regulation of actin polymerization for neutrophil spreading depends on a citrate-cholesterol-PI(4,5)P2 pathway. J Immunol. 2023;211(3):462–73.

Article  CAS  PubMed  Google Scholar 

Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J. Prostate cancer: genetics, epigenetics and the need for immunological biomarkers. Int J Mol Sci. 2023;24(16):12797.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boehm BE, York ME, Petrovics G, Kohaar I, Chesnut GT. Biomarkers of aggressive prostate cancer at diagnosis. Int J Mol Sci. 2023;24(3):2185.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uhr A, Glick L, Gomella LG. An overview of biomarkers in the diagnosis and management of prostate cancer. Can J Urol. 2020;27(S3):24–7.

PubMed  Google Scholar 

Kohaar I, Petrovics G, Srivastava S. A rich array of prostate cancer molecular biomarkers: opportunities and challenges. Int J Mol Sci. 2019;20(8):1813.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oudes AJ, Campbell DS, Sorensen CM, Walashek LS, True LD, Liu AY. Transcriptomes of human prostate cells. BMC Genom. 2006;7:92.

Article  Google Scholar 

Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, Barretina J, Gelfand ET, Bielski CM, Li H, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569(7757):503–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu H, Liu W, He C, Mirza M, Li B. Aberrant expression of multiple glycolytic enzyme genes is significantly associated with disease progression and survival outcomes in prostate cancers. Am J Clin Exp Urol. 2023;11(6):530–41.

PubMed  PubMed Central  Google Scholar 

Huang H, Song S, Liu W, Ye S, Bao Y, Mirza M, Li B, Huang J, Zhu R, Lian H. Expressions of glucose transporter genes are diversely attenuated and significantly associated with prostate cancer progression. Am J Clin Exp Urol. 2023;11(6):578–93.

CAS  PubMed  PubMed Central  Google Scholar 

He C, Liu W, Sun J, Zhang D, Li B. Jumonji domain-containing protein RIOX2 is overexpressed and associated with worse survival outcomes in prostate cancers. Front Oncol. 2023;13:1087082.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang J, Liu W, Zhang D, Lin B, Li B. TMEM158 expression is negatively regulated by AR signaling and associated with favorite survival outcomes in prostate cancers. Front Oncol. 2022;12:1023455.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang J, Liu W, Lin BY, Li JC, Lu J, Li BY. Scaffold protein MAPK8IP2 expression is a robust prognostic factor in prostate cancer associated with AR signaling activity. Asian J Androl. 2023;25(2):198–207.

Article  CAS  PubMed  Google Scholar 

Tao C, Liu W, Yan X, Yang M, Yao S, Shu Q, Li B, Zhu R. PAQR5 expression is suppressed by TGFbeta1 and associated with a poor survival outcome in renal clear cell carcinoma. Front Oncol. 2021;11:827344.

Article  CAS  PubMed  Google Scholar 

Yang M, Li JC, Tao C, Wu S, Liu B, Shu Q, Li B, Zhu R. PAQR6 upregulation is associated with AR signaling and unfavorite prognosis in prostate cancers. Biomolecules. 2021;11(9):1383.

Article  PubMed  PubMed Central  Google Scholar 

Huang J, Liu W, Song S, Li JC, Gan K, Shen C, Holzbeierlein J, Li B. The iron-modulating hormone hepcidin is upregulated and associated with poor survival outcomes in renal clear cell carcinoma. Front Pharmacol. 2022;13:1080055.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Liu W, Li JC, Li M, Li B, Zhu R. Hepcidin downregulation correlates with disease aggressiveness and immune infiltration in liver cancers. Front Oncol. 2021;11:714756.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menyhart O, Nagy A, Gyorffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R Soc Open Sci. 2018;5(12):181006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, Cieslik M, Benelli M, Robinson D, Van Allen EM, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116(23):11428–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng S, Li L, Yeh Y, Shi Y, Franco O, Corey E, Yu X. Unveiling novel double-negative prostate cancer subtypes through single-cell RNA sequencing analysis. NPJ Precis Oncol. 2024;8(1):171.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang XD, Wang BE, Soriano R, Zha J, Zhang Z, Modrusan Z, Cunha GR, Gao WQ. Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Differentiation. 2007;75(3):219–34.

Article  CAS  PubMed  Google Scholar 

Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao WQ, et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 2012;72(2):527–36.

Article  CAS  PubMed  Google Scholar 

Terada N, Shimizu Y, Kamba T, Inoue T, Maeno A, Kobayashi T, Nakamura E, Kamoto T, Kanaji T, Maruyama T, et al. Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Res. 2010;70(4):1606–15.

Article  CAS  PubMed  Google Scholar 

Pacini C, Dempster JM, Boyle I, Goncalves E, Najgebauer H, Karakoc E, van der Meer D, Barthorpe A, Lightfoot H, Jaaks P, et al. Integrated cross-study datasets of genetic dependencies in cancer. Nat Commun. 2021;12(1):1661.

Article 

Comments (0)

No login
gif