Millán-Zambrano, G., Burton, A., Bannister, A. J. & Schneider, R. Histone post-translational modifications — cause and consequence of genome function. Nat. Rev. Genet. 23, 563–580 (2022).
Zhao, S., Allis, C. D. & Wang, G. G. The language of chromatin modification in human cancers. Nat. Rev. Cancer 21, 413–430 (2021).
Article PubMed PubMed Central Google Scholar
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).
Article CAS PubMed Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).
Article CAS PubMed Google Scholar
Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).
Article CAS PubMed Google Scholar
Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).
Article CAS PubMed PubMed Central Google Scholar
Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).
Article PubMed PubMed Central Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
Article CAS PubMed PubMed Central Google Scholar
Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).
Article CAS PubMed PubMed Central Google Scholar
Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643 (2017).
Article CAS PubMed Google Scholar
Lusser, A. & Kadonaga, J. T. Strategies for the reconstitution of chromatin. Nat. Methods 1, 19–26 (2004).
Article CAS PubMed Google Scholar
Müller, M. M. & Muir, T. W. Histones: at the crossroads of peptide and protein chemistry. Chem. Rev. 115, 2296–2349 (2015).
Cuvier, O. & Fierz, B. Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat. Rev. Genet. 18, 457–472 (2017).
Article CAS PubMed Google Scholar
Fierz, B. & Poirier, M. G. Biophysics of chromatin dynamics. Annu. Rev. Biophys. 48, 321–345 (2019).
Article CAS PubMed Google Scholar
Mitchener, M. M. & Muir, T. W. Oncohistones: exposing the nuances and vulnerabilities of epigenetic regulation. Mol. Cell 82, 2925–2938 (2022).
Article CAS PubMed PubMed Central Google Scholar
Maksimovic, I. & David, Y. Non-enzymatic covalent modifications as a new chapter in the histone code. Trends Biochem. Sci. 46, 718–730 (2021).
Article CAS PubMed PubMed Central Google Scholar
Atlasi, Y. & Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 18, 643–658 (2017).
Article CAS PubMed Google Scholar
Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009).
Article CAS PubMed Google Scholar
Krieger, D. E., Levine, R., Merrifield, R. B., Vidali, G. & Allfrey, V. G. Chemical studies of histone acetylation. Substrate specificity of a histone deacetylase from calf thymus nuclei. J. Biol. Chem. 249, 332–334 (1974).
Article CAS PubMed Google Scholar
Krieger, D. E., Vidali, G., Erickson, B. W., Allfrey, V. G. & Merrifield, R. B. The synthesis of diacetylated histone H4-(1–37) for studies on the mechanism of histone deacetylation. Bioorg. Chem. 8, 409–427 (1979).
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).
Article CAS PubMed Google Scholar
Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10, 1291–1300 (2008).
Article CAS PubMed Google Scholar
Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).
Article CAS PubMed PubMed Central Google Scholar
Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).
Article CAS PubMed Google Scholar
Musselman, C. A. & Kutateladze, T. G. Strategies for generating modified nucleosomes: applications within structural biology studies. ACS Chem. Biol. 14, 579–586 (2019).
Article CAS PubMed PubMed Central Google Scholar
Padeken, J., Methot, S. P. & Gasser, S. M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat. Rev. Mol. Cell Biol. 23, 623–640 (2022).
Article CAS PubMed PubMed Central Google Scholar
Sankar, A. et al. Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nat. Genet. 54, 754–760 (2022).
Article CAS PubMed Google Scholar
Grewal, S. I. S. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol. Cell 83, 1767–1785 (2023).
Article CAS PubMed Google Scholar
Fitz-James, M. H. & Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. 23, 325–341 (2022).
Article CAS PubMed Google Scholar
Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).
Article CAS PubMed Google Scholar
Zhang, K., Mosch, K., Fischle, W. & Grewal, S. I. S. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).
Article CAS PubMed Google Scholar
Al-Sady, B., Madhani, H. D. & Narlikar, G. J. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol. Cell 51, 80–91 (2013).
Article CAS PubMed PubMed Central Google Scholar
Müller, M. M., Fierz, B., Bittova, L., Liszczak, G. & Muir, T. W. A two-state activation mechanism controls the histone methyltransferase Suv39h1. Nat. Chem. Biol. 12, 188–193 (2016).
Article PubMed PubMed Central Google Scholar
Poepsel, S., Kasinath, V. & Nogales, E. Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes. Nat. Struct. Mol. Biol. 25, 154–162 (2018).
Article CAS PubMed PubMed Central Google Scholar
Ge, E. J., Jani, K. S., Diehl, K. L., Müller, M. M. & Muir, T. W. Nucleation and propagation of heterochromatin by the histone methyltransferase PRC2: geometric constraints and impact of the regulatory subunit JARID2. J. Am. Chem. Soc. 141, 15029–15039 (2019). Through biochemical assays utilizing a variety of heterotypic designer nucleosome arrays, this study uncovers the geometric constraints of H3K27me3 propagation and demonstrates how differentially modified JARID2 regulates PRC2 substrate preferences.
Article CAS PubMed PubMed Central Google Scholar
Sanulli, S. et al. Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol. Cell 57, 769–783 (2015).
Article CAS PubMed PubMed Central Google Scholar
Oksuz, O. et al. Capturing the onset of PRC2-mediated repressive domain formation. Mol. Cell 70, 1149–1162 (2018).
Comments (0)