RNA polymerase II transcription compartments — from factories to condensates

Baum, M., Erdel, F., Wachsmuth, M. & Rippe, K. Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells. Nat. Commun. 5, 4494 (2014).

Article  CAS  PubMed  Google Scholar 

Boisvert, F. M., van Koningsbruggen, S., Navascues, J. & Lamond, A. I. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574–585 (2007).

Article  CAS  PubMed  Google Scholar 

Papantonis, A. & Cook, P. R. Transcription factories: genome organization and gene regulation. Chem. Rev. 113, 8683–8705 (2013).

Article  CAS  PubMed  Google Scholar 

Geisler, M. S., Kemp, J. P. Jr & Duronio, R. J. Histone locus bodies: a paradigm for how nuclear biomolecular condensates control cell cycle regulated gene expression. Nucleus 14, 2293604 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Jackson, D. A., Hassan, A. B., Errington, R. J. & Cook, P. R. Visualization of focal sites of transcription within human nuclei. EMBO J. 12, 1059–1065 (1993). The first visualization of discrete RNA polymerase II foci that founded the transcription factory model.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iborra, F. J., Pombo, A., Jackson, D. A. & Cook, P. R. Active RNA polymerases are localized within discrete transcription ‘factories’ in human nuclei. J. Cell Sci. 109, 1427–1436 (1996).

Article  CAS  PubMed  Google Scholar 

Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36, 1065–1071 (2004).

Article  CAS  PubMed  Google Scholar 

Ragoczy, T., Bender, M. A., Telling, A., Byron, R. & Groudine, M. The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 20, 1447–1457 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, G. L. et al. Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol. Cell. Biol. 26, 5096–5105 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutherland, H. & Bickmore, W. A. Transcription factories: gene expression in unions? Nat. Rev. Genet. 10, 457–466 (2009).

Article  CAS  PubMed  Google Scholar 

Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017). A perspective article introducing the notion of phase separation as a potential mechanism underlying transcriptional activation via enhancers.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).

Article  CAS  PubMed  Google Scholar 

Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958-17 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Shrinivas, K. et al. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549–561.e7 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei, M. T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020).

Article  CAS  PubMed  Google Scholar 

Lu, Y. et al. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453–464 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uversky, V. N. Recent developments in the field of intrinsically disordered proteins: intrinsic disorder-based emergence in cellular biology in light of the physiological and pathological liquid–liquid phase transitions. Annu. Rev. Biophys. 50, 135–156 (2021).

Article  CAS  PubMed  Google Scholar 

Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. 25, 187–211 (2024).

Article  CAS  PubMed  Google Scholar 

Musselman, C. A. & Kutateladze, T. G. Characterization of functional disordered regions within chromatin-associated proteins. iScience 24, 102070 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rippe, K. Liquid–liquid phase separation in chromatin. Cold Spring Harb. Perspect. Biol. 14, a040683 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jonas, F., Navon, Y. & Barkai, N. Intrinsically disordered regions as facilitators of the transcription factor target search. Nat. Rev. Genet. 26, 424–435 (2025).

Article  CAS  PubMed  Google Scholar 

Soto, L. F. et al. Compendium of human transcription factor effector domains. Mol. Cell 82, 514–526 (2022). This paper presents a comprehensive catalogue of more than 900 effector domains across ~600 human transcription factors including charge, hydrophobicity, disorder and phosphorylation information.

Article  CAS  PubMed  Google Scholar 

Mar, M., Nitsenko, K. & Heidarsson, P. O. Multifunctional intrinsically disordered regions in transcription factors. Chemistry 29, e202203369 (2023).

Article  CAS  PubMed  Google Scholar 

Rippe, K. & Papantonis, A. Functional organization of RNA polymerase II in nuclear subcompartments. Curr. Opin. Cell Biol. 74, 88–96 (2022).

Article  CAS  PubMed  Google Scholar 

McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stortz, M., Presman, D. M. & Levi, V. Transcriptional condensates: a blessing or a curse for gene regulation? Commun. Biol. 7, 187 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Trojanowski, J. et al. Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol. Cell 82, 1878–1893.e10 (2022). This study shows that assembly of transcription factors into liquid-like droplets has a neutral or even inhibitory effect on transcriptional activation.

Article  CAS  PubMed  Google Scholar 

Chong, S. et al. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell 82, 2084–2097.e5 (2022). This study shows that increasing intrinsically disordered region (IDR)–IDR interactions of an oncogenic transcription factor to induce phase separation results in the repression of transcription of its endogenous target genes.

Article  CAS  PubMed  Google Scholar 

Meeussen, J. V. W. et al. Transcription factor clusters enable target search but do not contribute to target gene activation. Nucleic Acids Res. 51, 5449–5468 (2023).

Article  CAS  PubMed 

Comments (0)

No login
gif