Machine learning for microbiologists

Bishop, C. M. Pattern recognition and machine learning (Springer, 2006).

Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer Science & Business Media, 2009).

James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: with Applications in R (Springer Science & Business Media, 2013).

Murphy, K. P. Probabilistic Machine Learning: Advanced Topics (MIT Press, 2022).

Goodswen, S. J. et al. Machine learning and applications in microbiology. FEMS Microbiol. Rev. 45, fuab015 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Topçuoğlu, B. D., Lesniak, N. A., Ruffin, M. T., 4th, Wiens, J. & Schloss, P. D. A framework for effective application of machine learning to microbiome-based classification problems. mBio 11, e00434-20 (2020). This work focuses on applying machine learning to microbiome data for disease prediction, highlighting the important trade-off between model complexity and interpretability, and emphasizing the need for rigorous methodology towards more reproducible machine learning usage in microbiome research.

Article  PubMed  PubMed Central  Google Scholar 

Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parks, D. H., MacDonald, N. J. & Beiko, R. G. Classifying short genomic fragments from novel lineages using composition and homology. BMC Bioinformatics 12, 328 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosen, G. L., Reichenberger, E. R. & Rosenfeld, A. M. NBC: the Naive Bayes Classification tool webserver for taxonomic classification of metagenomic reads. Bioinformatics 27, 127–129 (2011).

Article  CAS  PubMed  Google Scholar 

McHardy, A. C., Martín, H. G., Tsirigos, A., Hugenholtz, P. & Rigoutsos, I. Accurate phylogenetic classification of variable-length DNA fragments. Nat. Methods 4, 63–72 (2007).

Article  CAS  PubMed  Google Scholar 

Patil, K. R., Roune, L. & McHardy, A. C. The PhyloPythiaS web server for taxonomic assignment of metagenome sequences. PLoS ONE 7, e38581 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gregor, I., Dröge, J., Schirmer, M., Quince, C. & McHardy, A. C. PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. PeerJ 4, e1603 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Vervier, K., Mahé, P., Tournoud, M., Veyrieras, J.-B. & Vert, J.-P. Large-scale machine learning for metagenomics sequence classification. Bioinformatics 32, 1023–1032 (2016). This work introduces a machine learning-based approach for tackling the taxonomic binning step, using a supervised approach that balances accuracy and speed and outperforms alignment-based methods.

Article  CAS  PubMed  Google Scholar 

Diaz, N. N., Krause, L., Goesmann, A., Niehaus, K. & Nattkemper, T. W. TACOA — taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics 10, 56 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Sczyrba, A. et al. Critical assessment of metagenome interpretation — a benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis, J. J. et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci. Rep. 6, 27930 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kavvas, E. S. et al. Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat. Commun. 9, 4306 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Moradigaravand, D. et al. Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Comput. Biol. 14, e1006258 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Rahman, S. F., Olm, M. R., Morowitz, M. J. & Banfield, J. F. Machine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiome. mSystems 3, e00123–e00217 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).

Article  Google Scholar 

Baldi, P. Deep Learning in biomedical data science. Annu. Rev. Biomed. Data Sci. 1, 181–205 (2018).

Article  Google Scholar 

Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 47, e110 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weimann, A. et al. From genomes to phenotypes: Traitar, the microbial trait analyzer. mSystems 1, e00101–e00116 (2016). This work uses machine learning to predict 67 microbial phenotypic traits from genome sequences, facilitating the analysis of large-scale microbial genomic data.

Article  PubMed  PubMed Central  Google Scholar 

Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 12, e1004977 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

Article  CAS  PubMed  Google Scholar 

Ghensi, P. et al. Strong oral plaque microbiome signatures for dental implant diseases identified by strain-resolution metagenomics. NPJ Biofilms Microbiomes 6, 47 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salosensaari, A. et al. Taxonomic signatures of cause-specific mortality risk in human gut microbiome. Nat. Commun. 12, 2671 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kartal, E. et al. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 71, 1359–1372 (2022).

Article  CAS  PubMed  Google Scholar 

Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 21, 321–332 (2021).

Article  Google Scholar 

Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

Article  CAS  PubMed  Google Scholar 

Gopalakrishnan, V. et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

Article  CAS  PubMed  Google Scholar 

Derosa, L. et al. Intestinal Akkermansia muciniphila predicts overall survival in advanced non-small cell lung cancer patients treated with anti-PD-1 antibodies: results a phase II study. J. Clin. Orthod. 39, 9019–9019 (2021).

Google Scholar 

Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

Article  CAS 

Comments (0)

No login
gif