Bishop, C. M. Pattern recognition and machine learning (Springer, 2006).
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn (Springer Science & Business Media, 2009).
James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: with Applications in R (Springer Science & Business Media, 2013).
Murphy, K. P. Probabilistic Machine Learning: Advanced Topics (MIT Press, 2022).
Goodswen, S. J. et al. Machine learning and applications in microbiology. FEMS Microbiol. Rev. 45, fuab015 (2021).
Article CAS PubMed PubMed Central Google Scholar
Topçuoğlu, B. D., Lesniak, N. A., Ruffin, M. T., 4th, Wiens, J. & Schloss, P. D. A framework for effective application of machine learning to microbiome-based classification problems. mBio 11, e00434-20 (2020). This work focuses on applying machine learning to microbiome data for disease prediction, highlighting the important trade-off between model complexity and interpretability, and emphasizing the need for rigorous methodology towards more reproducible machine learning usage in microbiome research.
Article PubMed PubMed Central Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
Article CAS PubMed PubMed Central Google Scholar
Parks, D. H., MacDonald, N. J. & Beiko, R. G. Classifying short genomic fragments from novel lineages using composition and homology. BMC Bioinformatics 12, 328 (2011).
Article CAS PubMed PubMed Central Google Scholar
Rosen, G. L., Reichenberger, E. R. & Rosenfeld, A. M. NBC: the Naive Bayes Classification tool webserver for taxonomic classification of metagenomic reads. Bioinformatics 27, 127–129 (2011).
Article CAS PubMed Google Scholar
McHardy, A. C., Martín, H. G., Tsirigos, A., Hugenholtz, P. & Rigoutsos, I. Accurate phylogenetic classification of variable-length DNA fragments. Nat. Methods 4, 63–72 (2007).
Article CAS PubMed Google Scholar
Patil, K. R., Roune, L. & McHardy, A. C. The PhyloPythiaS web server for taxonomic assignment of metagenome sequences. PLoS ONE 7, e38581 (2012).
Article CAS PubMed PubMed Central Google Scholar
Gregor, I., Dröge, J., Schirmer, M., Quince, C. & McHardy, A. C. PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes. PeerJ 4, e1603 (2016).
Article PubMed PubMed Central Google Scholar
Vervier, K., Mahé, P., Tournoud, M., Veyrieras, J.-B. & Vert, J.-P. Large-scale machine learning for metagenomics sequence classification. Bioinformatics 32, 1023–1032 (2016). This work introduces a machine learning-based approach for tackling the taxonomic binning step, using a supervised approach that balances accuracy and speed and outperforms alignment-based methods.
Article CAS PubMed Google Scholar
Diaz, N. N., Krause, L., Goesmann, A., Niehaus, K. & Nattkemper, T. W. TACOA — taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics 10, 56 (2009).
Article PubMed PubMed Central Google Scholar
Sczyrba, A. et al. Critical assessment of metagenome interpretation — a benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).
Article CAS PubMed PubMed Central Google Scholar
Davis, J. J. et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci. Rep. 6, 27930 (2016).
Article CAS PubMed PubMed Central Google Scholar
Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23 (2018).
Article PubMed PubMed Central Google Scholar
Kavvas, E. S. et al. Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat. Commun. 9, 4306 (2018).
Article PubMed PubMed Central Google Scholar
Moradigaravand, D. et al. Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Comput. Biol. 14, e1006258 (2018).
Article PubMed PubMed Central Google Scholar
Rahman, S. F., Olm, M. R., Morowitz, M. J. & Banfield, J. F. Machine learning leveraging genomes from metagenomes identifies influential antibiotic resistance genes in the infant gut microbiome. mSystems 3, e00123–e00217 (2018).
Article CAS PubMed PubMed Central Google Scholar
Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).
Baldi, P. Deep Learning in biomedical data science. Annu. Rev. Biomed. Data Sci. 1, 181–205 (2018).
Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 47, e110 (2019).
Article CAS PubMed PubMed Central Google Scholar
Weimann, A. et al. From genomes to phenotypes: Traitar, the microbial trait analyzer. mSystems 1, e00101–e00116 (2016). This work uses machine learning to predict 67 microbial phenotypic traits from genome sequences, facilitating the analysis of large-scale microbial genomic data.
Article PubMed PubMed Central Google Scholar
Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).
Article CAS PubMed PubMed Central Google Scholar
Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).
Article CAS PubMed PubMed Central Google Scholar
Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 12, e1004977 (2016).
Article PubMed PubMed Central Google Scholar
Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).
Article CAS PubMed Google Scholar
Ghensi, P. et al. Strong oral plaque microbiome signatures for dental implant diseases identified by strain-resolution metagenomics. NPJ Biofilms Microbiomes 6, 47 (2020).
Article CAS PubMed PubMed Central Google Scholar
Salosensaari, A. et al. Taxonomic signatures of cause-specific mortality risk in human gut microbiome. Nat. Commun. 12, 2671 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kartal, E. et al. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 71, 1359–1372 (2022).
Article CAS PubMed Google Scholar
Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 21, 321–332 (2021).
Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).
Article CAS PubMed PubMed Central Google Scholar
McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022).
Article CAS PubMed PubMed Central Google Scholar
Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).
Article CAS PubMed Google Scholar
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
Article CAS PubMed Google Scholar
Derosa, L. et al. Intestinal Akkermansia muciniphila predicts overall survival in advanced non-small cell lung cancer patients treated with anti-PD-1 antibodies: results a phase II study. J. Clin. Orthod. 39, 9019–9019 (2021).
Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).
Article CAS PubMed PubMed Central Google Scholar
Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).
Comments (0)