A genomic perspective on fungal diversity and evolution

Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Sebé-Pedrós, A., Degnan, B. M. & Ruiz-Trillo, I. The origin of Metazoa: a unicellular perspective. Nat. Rev. Genet. 18, 498–512 (2017).

Article  PubMed  Google Scholar 

Lücking, R., Huhndorf, S., Pfister, D. H., Plata, E. R. & Lumbsch, H. T. Fungi evolved right on track. Mycologia 101, 810–822 (2009).

Article  PubMed  Google Scholar 

Taylor, J. W. & Berbee, M. L. Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98, 838–849 (2006).

Article  PubMed  Google Scholar 

Hawksworth, D. L. & Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.funk-0052-2016 (2017).

Shen, X.-X. et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175, 1533–1545.e20 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frisvad, J. C. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front. Microbiol. 5, 773 (2014).

PubMed  Google Scholar 

Steenwyk, J. L., Shen, X.-X., Lind, A. L., Goldman, G. H. & Rokas, A. A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. mBio 10, e00925-19 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Kullnig-Gradinger, C. M., Szakacs, G. & Kubicek, C. P. Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol. Res. 106, 757–767 (2002).

Article  CAS  Google Scholar 

Grine, F. E. & Fleagle, J. G. The first humans: a summary perspective on the origin and early evolution of the genus Homo. In The First Humans — Origin and Early Evolution of the Genus Homo: Contributions from the Third Stony Brook Human Evolution Symposium and Workshop October 3–October 7, 2006 (eds Grine, F. E. et al.) 197–207 (Springer, 2009).

Lee, S. C. et al. Microsporidia evolved from ancestral sexual fungi. Curr. Biol. 18, 1675–1679 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quandt, C. A. et al. Evaluating the diversity of the enigmatic fungal phylum Cryptomycota across habitats using 18S rRNA metabarcoding. Fungal Ecol. 64, 101248 (2023).

Article  Google Scholar 

James, T. Y. et al. Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr. Biol. 23, 1548–1553 (2013).

Article  CAS  PubMed  Google Scholar 

James, T. Y. & Berbee, M. L. No jacket required — new fungal lineage defies dress code: recently described zoosporic fungi lack a cell wall during trophic phase. BioEssays 34, 94–102 (2012).

Article  CAS  PubMed  Google Scholar 

Bass, D. et al. Clarifying the relationships between Microsporidia and Cryptomycota. J. Eukaryot. Microbiol. 65, 773–782 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Letcher, P. M. & Powell, M. J. A taxonomic summary of Aphelidiaceae. IMA Fungus 10, 4 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Mikhailov, K. V. et al. Genomic analysis reveals cryptic diversity in aphelids and sheds light on the emergence of Fungi. Curr. Biol. 32, 4607–4619.e7 (2022).

Article  CAS  PubMed  Google Scholar 

Jones, M. D. M. et al. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474, 200–203 (2011).

Article  CAS  PubMed  Google Scholar 

James, T. Y. et al. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98, 860–871 (2006).

Article  PubMed  Google Scholar 

Solomon, K. V. et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351, 1192–1195 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reisert, P. S. & Fuller, M. S. Decomposition of chitin by Chytriomyces species. Mycologia 54, 647–657 (1962).

Article  CAS  Google Scholar 

Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125–134 (2007).

Article  Google Scholar 

Chang, Y. et al. Genome-scale phylogenetic analyses confirm Olpidium as the closest living zoosporic fungus to the non-flagellated, terrestrial fungi. Sci. Rep. 11, 3217 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gryganskyi, A. P. et al. Sequencing the genomes of the first terrestrial fungal lineages: what have we learned? Microorganisms 11, 1830 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimizu, S., Ogawa, J., Kataoka, M. & Kobayashi, M. Screening of novel microbial enzymes for the production of biologically and chemically useful compounds. Adv. Biochem. Eng. Biotechnol. 58, 45–87 (1997).

CAS  PubMed  Google Scholar 

Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K. & Barea, J.-M. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 37, 1–16 (2003).

Article  Google Scholar 

Ibrahim, A. S., Spellberg, B., Walsh, T. J. & Kontoyiannis, D. P. Pathogenesis of mucormycosis. Clin. Infect. Dis. 54, S16–S22 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta, Y. K. et al. Major proliferation of transposable elements shaped the genome of the soybean rust pathogen Phakopsora pachyrhizi. Nat. Commun. 14, 1835 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duplessis, S. et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc. Natl Acad. Sci. USA 108, 9166–9171 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duplessis, S. et al. Host adaptation and virulence in heteroecious rust fungi. Annu. Rev. Phytopathol. 59, 403–422 (2021).

Article  CAS  PubMed  Google Scholar 

Lass-Flörl, C. et al. Invasive candidiasis. Nat. Rev. Dis. Primers 10, 20 (2024).

Article  PubMed  Google Scholar 

Cadena, J., Thompson, G. R. & Patterson, T. F. Aspergillosis: epidemiology, diagnosis, and treatment. Infect. Dis. Clin. 35, 415–434 (2021).

Google Scholar 

Nagy, L. G. et al. Six key traits of fungi: their evolutionary origins and genetic bases. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.funk-0036-2016 (2017).

James, T. Y. & Rokas, A. Use their names: there are no basal, lower, or early diverging fungi. Mycologia 117, 246–254 (2025).

Article  PubMed  Google Scholar 

Lankiewicz, T. S. et al. Lignin deconstruction by anaerobic fungi. Nat. Microbiol. 8, 596–610 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cantrell, S. A., Dianese, J. C., Fell, J., Gunde-Cimerman, N. & Zalar, P. Unusual fungal niches. Mycologia 103, 1161–1174 (2011).

Article  CAS  PubMed  Google Scholar 

Coleine, C., Stajich, J. E. & Selbmann

Comments (0)

No login
gif