Abdi, H., Williams, L.J.: Principal component analysis. Wiley interdisciplinary reviews: computational statistics 2(4), 433–459 (2010)
Chaokai, H., Ke, C.J., Chungyu, W.: Identification of biomarkers for early diagnosis of Parkinson’s disease by multi-omics joint analysis. Saudi J. Biol. Sci. 27(8), 2082–2088 (2020)
Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240, (2006)
Diaz, M., Moetesum, M., Siddiqi, I., Vessio, G.: Sequence-based dynamic handwriting analysis for Parkinsons disease detection with one-dimensional convolutions and bigrus. Expert Syst. Appl. 168, 114405 (2021)
Gottapu, R.D., Dagli, C.H.: Analysis of Parkinsons disease data. Proc. Comput. Sci. 140, 334–341 (2018)
Goyal, J., Khandnor, P., Aseri, T.C.: Classification, prediction, and monitoring of Parkinsons disease using computer assisted technologies: A comparative analysis. Eng. Appl. Artif. Intell. 96, 103955 (2020)
Gunduz, H.: Deep learning-based Parkinson’s disease classification using vocal feature sets. IEEE Access 7, 115540–115551 (2019)
Hossain, S., Umer, S., Asari, V., Rout, R.K.: A unified framework of deep learning-based facial expression recognition system for diversified applications. Appl. Sci. 11(19), 9174 (2021)
Howland, P., Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 995–1006 (2004)
Inguanzo, A., Roser Sala-Llonch, B., Segura, H.E., Abós, A., Anna Campabadal, C., Uribe, H.C., Baggio, Y.C., Marti, M.J., et al.: Hierarchical cluster analysis of multimodal imaging data identifies brain atrophy and cognitive patterns in Parkinsons disease. Parkinsonism Related Disorders 82, 16–23 (2021)
Article CAS PubMed Google Scholar
Jankovic, J.: Parkinsons disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368–376 (2008)
Article CAS PubMed Google Scholar
Lahmiri, S., Dawson, D.A., Shmuel, A.: Performance of machine learning methods in diagnosing Parkinson’s disease based on dysphonia measures. Biomed. Eng. Lett. 8(1), 29–39 (2018)
Landers, M.R., Jacobson, K.M., Matsunami, N.E., McCarl, H.E., Regis, M.T., Longhurst, J.K.: A vicious cycle of fear of falling avoidance behavior in Parkinsons disease: Aa path analysis. Clin. Parkinsonism Related Disorders 4, 100089 (2021)
Little, M., McSharry, P., Hunter, E., Spielman, J., Ramig, L.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. Nat. Prec. 12, 1–1 (2008)
Manfei, X., Fralick, D., Zheng, J.Z., Wang, B., Tu, X.M., Feng, C.: The differences and similarities between two-sample t-test and paired t-test. Shanghai Arch. Psychiatry 29(3), 184 (2017)
McLachlan, Geoffrey J.: Discriminant analysis and statistical pattern recognition. John Wiley & Sons, UK (2004)
Mitzenmacher, M., Upfal, E.: Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis. Cambridge University Press, Cambridge (2017)
Nasar, N., Ray, S., Umer, S., Mohan, Pandey H.: Design and data analytics of electronic human resource management activities through internet of things in an organization. Softw. Practice Exp. 51(12), 2411–2427 (2020)
Okan Sakar, C., Serbes, G., Gunduz, A., Tunc, H.C., Nizam, H., Sakar, B.E., Tutuncu, M., Tarkan Aydin, M., Isenkul, E., Apaydin, H.: A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable q-factor wavelet transform. Appl. Soft Comput. 74, 255–263 (2019)
Poewe, W., Klaus, S., Tanner, C., Halliday, G.M., Brundin, P., Volkmann, J., Lang, A.E.: Parkinson disease. Nat. Rev. Dis. Primers 3(1), 1–21 (2017)
Rana, A.Q., Kabir, A., Jesudasan, M., Siddiqui, I., Khondker, S.: Pain in Parkinson’s disease: analysis and literature review. Clin. Neurol. Neurosurg. 115(11), 2313–2317 (2013)
Rosen, K.M., Kent, R.D., Delaney, A.L., Duffy, J.R.: Parametric quantitative acoustic analysis of conversation produced by speakers with dysarthria and healthy speakers. J. Speech Lang. Hear Res. 49(2), 395–411 (2006)
Rout, R.K., Hassan, S.S., Sheikh, S., Umer, S., Sahoo, K.S., Gandomi, A.H.: Feature-extraction and analysis based on spatial distribution of amino acids for SARS-CoV-2 protein sequences. Comput. Biol. Med. 141, 105024 (2022)
Article CAS PubMed Google Scholar
Rout, R.K., Hassan, S.S., Sindhwani, S., Pandey, H.M., Umer, S.: Intelligent classification and analysis of essential genes using quantitative methods. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(1), 1–21 (2020)
Rout, R.K., Umer, S., Sheikh, S., Sindhwani, S., Pati, S.: Eightydvec: a method for protein sequence similarity analysis using physicochemical properties of amino acids. Comput. Methods Biomech. Biomed. Eng: Imag. Visual. 10(1), 3–13 (2022)
Ruggiero, C., Sacile, R., Giacomini, M.: Home telecare. J. Telemed. Telecare 5(1), 11–17 (1999)
Article CAS PubMed Google Scholar
Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory to algorithms. Cambridge University Press, Cambridge (2014)
Solana-Lavalle, G., Rosas-Romero, R.: Analysis of voice as an assisting tool for detection of Parkinson’s disease and its subsequent clinical interpretation. Biomed. Signal Process. Control 66, 102415 (2021)
Tsoulos, I.G., Mitsi, G., Stavrakoudis, A., Papapetropoulos, S.: Application of machine learning in a Parkinson’s disease digital biomarker dataset using neural network construction (nnc) methodology discriminates patient motor status. Front. ICT 6, 10 (2019)
Umapathy, K., Krishnan, S.: Feature analysis of pathological speech signals using local discriminant bases technique. Med. Biol. Eng. Comput. 43(4), 457–464 (2005)
Article CAS PubMed Google Scholar
Umer, S., Mohanta, P.P., Rout, R.K., Pandey, H.M.: Machine learning method for cosmetic product recognition: a visual searching approach. Multimed. Tools Appl. 80, 1–27 (2020)
Wilcox, R.R.: Statistics for the social sciences. Academic Press, USA (1996)
Wroge, T.J., Özkanca, Y., Demiroglu, C., Si, D., Atkins, D.C., Ghomi, R.H.: Parkinsons disease diagnosis using machine learning and voice. In 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), IEEE, pp 1–7, (2018)
Yang, S., Zheng, F., Luo, X., Cai, S., Yunfeng, W., Liu, K., Meihong, W., Chen, J., Krishnan, S.: Effective dysphonia detection using feature dimension reduction and kernel density estimation for patients with parkinson’s disease. PLoS ONE 9(2), e88825 (2014)
Article PubMed PubMed Central Google Scholar
Zhang, Y., Yang, M., Wang, F., Chen, Y., Liu, R., Zhang, Z., Jiang, Z.: Histogram analysis of quantitative susceptibility mapping for the diagnosis of Parkinson’s disease. Acad. Radiol. 29, S71-9 (2020)
Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)
Comments (0)