Alotaibi, Fahd Saleh: Implementation of machine learning model to predict heart failure disease. International J. Adv. Comput. Sci. Appl., (2019)
Alotaibi, F.: Implementation of machine learning model to predict heart failure disease. Int. J. Adv. Comput. Sci. Appl. 10, 01 (2019)
Baran, D., Grines, C., Bailey, S., Burkhoff, D., Hall, S., Henry, T., Hollenberg, S., Kapur, N., O’Neill, W., Ornato, J., Stelling, K., Thiele, H., Diepen, S., Naidu, S.: Scai clinical expert consensus statement on the classification of cardiogenic shock: this document was endorsed by the american college of cardiology (acc), the american heart association (aha), the society of critical care medicine (sccm), and the society of thoracic surgeons (sts) in April 2019. Catheter. Cardiovasc. Interv. 94, 05 (2019)
Beunza, J.J., Puertas, E., García-Ovejero, E., Villalba, G., Condes, E., Koleva, G., Hurtado, C., Landecho, M.F.: Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease). J. Biomed. Info. 97, 103257 (2019)
Durairaj, M., Revathi, V.: Prediction of heart disease using back propagation mlp algorithm. Int. J. Sci. Technol. Res. 4, 235–239 (2015)
El-Kenawy, E.-S.M., Mirjalili, S., Alassery, F., Zhang, Y.-D., Eid, M.M., El-Mashad, S.Y., Aloyaydi, B.A., Ibrahim, A., Abdelhamid, A.A.: Novel meta-heuristic algorithm for feature selection, unconstrained functions and engineering problems. IEEE Access 10, 40536–40555 (2022)
Gavhane, Aditi, Kokkula, Gouthami, Pandya, Isha, Devadkar, Prof. Kailas: Prediction of heart disease using machine learning. 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pages 1275–1278, (2018)
Gokulnath, C., Shantharajah, S.P.: An optimized feature selection based on genetic approach and support vector machine for heart disease. Clust. Comput. 22, 1–11 (2018)
Guo, Z., Lina, X., Si, Y., Razmjooy, N.: Novel computer-aided lung cancer detection based on convolutional neural network-based and feature-based classifiers using metaheuristics. Int. J. Imaging Syst. Technol. 31, 1954–1969 (2021)
Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R.K., Kumar, P.: Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Diversity 25, 1315–1360 (2021)
Javeed, A., Zhou, S., Yongjian, L., Qasim, I., Noor, A., Nour, R.: An intelligent learning system based on random search algorithm and optimized random forest model for improved heart disease detection. IEEE Access. 7, 180235–43 (2019)
Kamil, Ziadoon, Robiah, Y., Bahaman, Nazrulazhar, Mostafa, Salama, Mohd Foozy, Cik Feresa: Benchmarking of machine learning for anomalybased intrusion detection systems in the cicids2017 dataset. IEEE Access, 02 (2021)
Liu, X., Wang, X., Qiang, S., Zhang, M., Zhu, Y., Wang, Q., Wang, Q.: A hybrid classification system for heart disease diagnosis based on the rfrs method. Comput. Math. Methods Med. 1–11(01), 2017 (2017)
Maji, Srabanti, Arora, Srishti: Decision tree algorithms for prediction of heart disease. Information and Communication Technology for Competitive Strategies, (2018)
Malav, A., Kadam, K., Kamat, P.: Prediction of heart disease using k-means and artificial neural network as hybrid approach to improve accuracy. Int. J. Eng. Technol. 9(3081–3085), 08 (2017)
Mathi, V., Sheela, T.: Heart disease prediction using hyper parameter optimization (hpo) tuning. Biomed. Signal Proc. Control 70(103033), 09 (2021)
Mienye, D., Sun, Y., Wang, Z.: An improved ensemble learning approach for the prediction of heart disease risk. Info. Med. Unlocked 20(100402), 07 (2020)
Mohan, Senthilkumar, Thirumalai, Chandra Segar, Srivastava, Gautam: Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, PP:1–1, 06 (2019)
Mutyala, Nikhil Kumar, Koushik, K.V.s., Krishna, K.: Prediction of heart diseases using data mining and machine learning algorithms and tools. Int. J. Sci. Res. Comput. Sci, Eng. Info. Technol. 03 887 (2018)
Nikhar, S., Karandikar, A.: Prediction of heart disease using machine learning algorithms. Int. J. Adv. Eng. Manag. Sci. 2, 239484 (2016)
Nourmohammadi-Khiarak, J., Feizi-Derakhshi, M.R., Behrouzi, K., Mazaheri, S., Zamani-Harghalani, Y., Tayebi, R.M.: New hybrid method for heart disease diagnosis utilizing optimization algorithm in feature selection. Health Technol. 10(3), 667–78 (2020)
Ostroumova, Liudmila, Gusev, Gleb, Vorobev, Aleksandr, Dorogush, Anna Veronika, Gulin, Andrey: Catboost: unbiased boosting with categorical features. In NeurIPS, (2018)
Oyewo, O., Boyinbode, O.: Prediction of prostate cancer using ensemble of machine learning techniques. Int. J. Adv. Comput. Sci. Appl. 11(149), 03 (2020)
Pavan Kumar, T., Golande, A.: Heart disease prediction using effective machine learning techniques. Int. J. Recent Technol. Eng. 8, 06 (2019)
Pouriyeh, Seyedamin, Vahid, Sara, Sannino, Giovanna, Pietro, Giuseppe De, Arabnia, Hamid Reza, Gutierrez, Juan B.: A comprehensive investigation and comparison of machine learning techniques in the domain of heart disease. 2017 IEEE Symposium on Computers and Communications (ISCC), pages 204–207, (2017)
Repaka, Anjan Nikhil, Ravikanti, Sai Deepak, Franklin, Ramya G.: Design and implementing heart disease prediction using naives bayesian. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pages 292–297, (2019)
Safdari, R., Rezaei-Hachesu, P., Saeedi, M.G., Samad-Soltani, T., Zolnoori, M.: Evaluation of classification algorithms vs knowledge-based methods for differential diagnosis of asthma in iranian patients. Int. J. Inf. Syst. Serv. Sect. 10, 22–35 (2018)
Saqlain, S., Shah, F., Ramzan, M.S., Khan, I., Ashraf, M., Ghani, A., Awais, M.: Fisher score and matthews correlation coefficient-based feature subset selection for heart disease diagnosis using support vector machines. Knowl. Info. Syst. 58, 01 (2019)
Sharma, Himanshu, Rizvi, Murtaza: Prediction of heart disease using machine learning algorithms: A survey. 08 (2017)
Suresh, T., Brijet, Z., Thompson, B.: Cmvhho-dkmlc: a chaotic multi verse harris hawks optimization (cmv-hho) algorithm based deep kernel optimized machine learning classifier for medical diagnosis. Biomed. Signal Proc. Control 70, 103034 (2021)
Vijayashree, J., Sultana, P.: A machine learning framework for feature selection in heart disease classification using improved particle swarm optimization with support vector machine classifier. Progr. Comput. Softw. 44, 388–397 (2018)
Zervoudakis, K., Tsafarakis, S.: A mayfly optimization algorithm. Comput. Ind. Eng. 145, 106559 (2020)
Comments (0)