Combining multiple sources of relationships in a network to advance understanding of physicians’ beliefs regarding peer-effects

Abdallah, S.: Generalizing unweighted network measures to capture the focus in interactions. Social Netw. Anal. Min. 1(4), 255–269 (2011). https://doi.org/10.1007/s13278-011-0018-8

Article  Google Scholar 

An, C., O’Malley, A.J., Rockmore, D.N., Stock, C.D.: Analysis of the us patient referral network. Stat. Med. 37(5), 847–866 (2018). https://doi.org/10.1002/sim.7565

Article  PubMed  Google Scholar 

Arroyo, J., Priebe, C.E., Lyzinski, V.: Graph matching between bipartite and unipartite networks: to collapse, or not to collapse, that is the question. IEEE Trans. Netw Sci. Eng. 8(4), 3019–3033 (2021). https://doi.org/10.1109/TNSE.2021.3086508

Article  PubMed  PubMed Central  Google Scholar 

Bae, S.-H., Nikolaev, A., Seo, J.Y., Castner, J.: Health care provider social network analysis: a systematic review. Nurs. Outlook 63(5), 566–584 (2015). https://doi.org/10.1016/j.outlook.2015.05.006

Article  PubMed  Google Scholar 

Barnett, M.L., Christakis, N.A., O’Malley, J., Onnela, J.-P., Keating, N.L., Landon, B.E.: Physician patient-sharing networks and the cost and intensity of care in us hospitals. Med. Care 50(2), 152–160 (2012). https://doi.org/10.1097/MLR.0b013e31822dcef7

Article  PubMed  PubMed Central  Google Scholar 

Barnett, M.L., Keating, N.L., Christakis, N.A., O’malley, A.J., Landon, B.E.: Reasons for choice of referral physician among primary care and specialist physicians. J. Gener. Intern. Med. 27, 506–512 (2012). https://doi.org/10.1007/s11606-011-1861-z

Article  Google Scholar 

Barnett, M.L., Landon, B.E., O’malley, A.J., Keating, N.L.: Mapping physician networks with self-reported and administrative data. Health Serv. Res. 46(5), 1592–1609 (2011). https://doi.org/10.1111/j.1475-6773.2011.01262.x

Article  PubMed  PubMed Central  Google Scholar 

Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proceed. Natl. Acad. Sci. 101(11), 3747–3752 (2004). https://doi.org/10.1073/pnas.0400087101

Article  CAS  Google Scholar 

Bates, D., Mächler, M., Bolker, B., Walker, S. (2015) Fitting linear mixed-effects models using lme4. J. Stat. Softw., 67(1): 1–48. https://doi.org/10.18637/jss.v067.i01

Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987). https://doi.org/10.1086/228631

Article  Google Scholar 

Browne, W.J., Goldstein, H., Rasbash, J.: Multiple membership multiple classification (mmmc) models. Stat. Model. 1(2), 103–124 (2001). https://doi.org/10.1177/1471082X0100100202

Article  Google Scholar 

Burt, R.S., Meltzer, D.O., Seid, M., Borgert, A., Chung, J.W., Colletti, R.B., Dellal, G., Kahn, S.A., Kaplan, H.C., Peterson, L.E., et al.: What’s in a name generator? choosing the right name generators for social network surveys in healthcare quality and safety research. BMJ Qual. Safety 21(12), 992–1000 (2012). https://doi.org/10.1136/bmjqs-2011-000521

Article  Google Scholar 

Chung, H., Beretvas, S.N.: The impact of ignoring multiple membership data structures in multilevel models. British J. Math. Stat. Psychol. 65(2), 185–200 (2012). https://doi.org/10.1111/j.2044-8317.2011.02023.x

Article  Google Scholar 

Costenbader, E., Valente, T.W.: The stability of centrality measures when networks are sampled. Social Netw. 25(4), 283–307 (2003)

Google Scholar 

Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006)

Google Scholar 

Freeman, L.C.: Centrality in social networks conceptual clarification. Social Netw. 1(3), 215–239 (1978). https://doi.org/10.1016/0378-8733(78)90021-7

Article  Google Scholar 

Guillaume, J.-L., Latapy, M.: Bipartite structure of all complex networks. Inform. Process. Lett. 90(5), 215–221 (2004). https://doi.org/10.1016/j.ipl.2004.03.007

Article  Google Scholar 

Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967). https://doi.org/10.1007/BF02289588

Article  CAS  PubMed  Google Scholar 

Keating, N.L., Ayanian, J.Z., Cleary, P.D., Marsden, P.V.: Factors affecting influential discussions among physicians: a social network analysis of a primary care practice. J. Gener. Intern. Med. 22, 794–798 (2007). https://doi.org/10.1007/s11606-007-0190-8

Article  Google Scholar 

Landon, B.E., Keating, N.L., Barnett, M.L., Onnela, J.-P., Paul, S., O’Malley, A.J., Keegan, T., Christakis, N.A.: Variation in patient-sharing networks of physicians across the United States. Jama 308(3), 265–273 (2012). https://doi.org/10.1001/jama.2012.7615

Article  CAS  PubMed  PubMed Central  Google Scholar 

Littell, R.C., Pendergast, J., Natarajan, R.: Modelling covariance structure in the analysis of repeated measures data. Stat. Med. 19(13), 1793–1819 (2000)

Moen, E.L., Bynum, J.P.: Evaluation of physician network-based measures of care coordination using medicare patient-reported experience measures. J. Gener. Intern. Med. 34, 2482–2489 (2019). https://doi.org/10.1007/s11606-019-05313-y

Article  Google Scholar 

Moen, E.L., Kapadia, N.S., O’Malley, A.J., Onega, T.: Evaluating breast cancer care coordination at a rural national cancer institute comprehensive cancer center using network analysis and geospatial methods. Cancer Epidemiol. Biomark. Prev. 28(3), 455–461 (2019). https://doi.org/10.1158/1055-9965.EPI-18-0771

Article  Google Scholar 

Newman, M.E.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131 (2004). https://doi.org/10.1103/PhysRevE.70.056131

Article  CAS  Google Scholar 

Olkin, I., Tate, R.F.: Multivariate correlation models with mixed discrete and continuous variables. Annals Math. Stat. (1961). https://doi.org/10.1214/aoms/1177705052

Article  Google Scholar 

Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Social Netw. 32(3), 245–251 (2010). https://doi.org/10.1016/j.socnet.2010.03.006

Article  Google Scholar 

O’Malley, A.J., James, P., MacKenzie, T.A., Byun, J., Subramanian, S., Block, J.P.: Modeling a bivariate residential-workplace neighborhood effect when estimating the effect of proximity to fast-food establishments on body mass index. Stat. Med. 38(6), 1013–1035 (2019). https://doi.org/10.1002/sim.8039

Article  PubMed  Google Scholar 

O’Malley, A.J., Normand, S.L.T., Kuntz, R.E.: Application of models for multivariate mixed outcomes to medical device trials: coronary artery stenting. Stat. Med. 22(2), 313–336 (2003). https://doi.org/10.1002/sim.1337

Article  PubMed  Google Scholar 

O’Malley, A.J., Onnela, J.-P., Keating, N.L., Landon, B.E.: The impact of sampling patients on measuring physician patient-sharing networks using medicare data. Health Serv. Res. 56(2), 323–333 (2021). https://doi.org/10.1111/1475-6773.13568

Article  Google Scholar 

O’Malley, A.J., Ran, X., An, C., Rockmore, D.N.: Optimal physician shared-patient networks and the diffusion of medical technologies. J. Data Sci. 21(3), 578 (2023). https://doi.org/10.6339/22-jds1064

Article  PubMed  Google Scholar 

O’Malley, A.J., Zhao, Y., Bobak, C.A., Qin, C., Moen, E.L., Rockmore, D.N.: Optimal physician shared-patient networks and the diffusion of medical technologies. Statistical Methods for Medical Research In press (2025)

Pham, H.H., O’Malley, A.S., Bach, P.B., Saiontz-Martinez, C., Schrag, D.: Primary care physicians’ links to other physicians through medicare patients: the scope of care coordination. Annals Intern. Med. 150(4), 236–242 (2009). https://doi.org/10.7326/0003-4819-150-4-200902170-00004

Article  Google Scholar 

Pollack, C.E., Weissman, G.E., Lemke, K.W., Hussey, P.S., Weiner, J.P.: Patient sharing among physicians and costs of care: a network analytic approach to care coordination using claims data. J. Gener. Intern. Med. 28, 459–465 (2013). https://doi.org/10.1007/s11606-012-2104-7

Article  Google Scholar 

Pomare, C., Long, J.C., Churruca, K., Ellis, L.A., Braithwaite, J.: Social network research in health care settings: design and data collection. Social Netw. 69, 14–21 (2022). https://doi.org/10.1016/j.socnet.2019.11.004

Article  Google Scholar 

R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2022). R Foundation for Statistical Computing. https://www.R-project.org/

Tranmer, M., Steel, D., Browne, W.J.: Multiple-membership multiple-classification models for social network and group dependences. J. Royal Stat. Soc. Ser. A: Stat. Soc. 177(2), 439–455 (2014). https://doi.org/10.1111/rssa.12021

Article  Google Scholar 

Valente, T.W., Coronges, K., Lakon, C., Costenbader, E.: How correlated are network centrality measures? Connections (Toronto, Ont.) 28(1), 16 (2008)

PubMed  Google Scholar 

van Paridon, J., Bolker, B., Alday, P.: lmerMultiMember: multiple membership random effects. (2023). R package version 0.11.8. https://jvparidon.github.io/lmerMultiMember/

Comments (0)

No login
gif