Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C (2018) Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biol. https://doi.org/10.1098/rsob.170224
Article PubMed PubMed Central Google Scholar
Beling I (1929) Über das Zeitgedächtnis der Bienen. Zeitschrift Fur Vergleichende Physiologie 9(2):259–338
Benloucif S, Masana MI, Yun K, Dubocovich ML (1999) Interactions between light and melatonin on the circadian clock of mice. J Biol Rhythms 14(4):281–289. https://doi.org/10.1177/074873099129000696
Article CAS PubMed Google Scholar
Colizzi FS, Martínez-Torres D, Helfrich-Förster C (2023a) The circadian and photoperiodic clock of the pea aphid. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. https://doi.org/10.1007/s00359-023-01660-8
Colizzi FS, Veenstra JA, Rezende GL, Helfrich-Förster C, Martínez-Torres D (2023b) Pigment-dispersing factor is present in circadian clock neurons of pea aphids and may mediate photoperiodic signalling to insulin-producing cells. Open Biol 13(6):230090. https://doi.org/10.1098/rsob.230090
Article CAS PubMed PubMed Central Google Scholar
Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, Hu Z, Liu X, Waschek JA (2003) Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 285(5):R939-949. https://doi.org/10.1152/ajpregu.00200.2003
Article CAS PubMed Google Scholar
Crowley SJ, Molina TA, Burgess HJ (2015) A week in the life of full-time office workers: Work day and weekend light exposure in summer and winter. Appl Ergon 46:193–200. https://doi.org/10.1016/j.apergo.2014.08.006
Dardente H, Wyse CA, Birnie MJ, Dupre SM, Loudon AS, Lincoln GA, Hazlerigg DG (2010) A molecular switch for photoperiod responsiveness in mammals. Curr Biol 20(24):2193–2198. https://doi.org/10.1016/j.cub.2010.10.048
Article CAS PubMed Google Scholar
Davis SJ (2002) Photoperiodism: The coincidental perception of the season. Curr Biol 12(24):R841–R843. https://doi.org/10.1016/S0960-9822(02)01348-9
Article CAS PubMed Google Scholar
Dopico XC, Evangelou M, Ferreira RC, Guo H, Pekalski ML, Smyth DJ, Cooper N, Burren OS, Fulford AJ, Hennig BJ, Prentice AM, Ziegler AG, Bonifacio E, Wallace C, Todd JA (2015) Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat Commun 6:7000. https://doi.org/10.1038/ncomms8000
Article CAS PubMed Google Scholar
Eick AK, Ogueta M, Buhl E, Hodge JJL, Stanewsky R (2022) The opposing chloride cotransporters KCC and NKCC control locomotor activity in constant light and during long days. Curr Biol 32(6):1420-1428.e1424. https://doi.org/10.1016/j.cub.2022.01.056
Article CAS PubMed Google Scholar
Evans JA, Schwartz WJ (2023) On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. https://doi.org/10.1007/s00359-023-01659-1
Evans JA, Leise TL, Castanon-Cervantes O, Davidson AJ (2013) Dynamic interactions mediated by nonredundant signaling mechanisms couple circadian clock neurons. Neuron 80(4):973–983. https://doi.org/10.1016/j.neuron.2013.08.022
Article CAS PubMed Google Scholar
Farajnia S, van Westering TL, Meijer JH, Michel S (2014) Seasonal induction of GABAergic excitation in the central mammalian clock. Proc Natl Acad Sci USA 111(26):9627–9632. https://doi.org/10.1073/pnas.1319820111
Article CAS PubMed PubMed Central Google Scholar
Forel A (1908) The senses of insects. Methuen & Co., London
Foster RG (2021) Melatonin. Curr Biol 31(22):R1456–R1458. https://doi.org/10.1016/j.cub.2021.10.029
Article CAS PubMed Google Scholar
Foster RG, Roenneberg T (2008) Human responses to the geophysical daily, annual and lunar cycles. Curr Biol 18(17):R784-r794. https://doi.org/10.1016/j.cub.2008.07.003
Article CAS PubMed Google Scholar
Gendron JM, Staiger D (2023) New Horizons in Plant Photoperiodism. Annu Rev Plant Biol 74:481–509. https://doi.org/10.1146/annurev-arplant-070522-055628
Article CAS PubMed Google Scholar
Gwinner E (2003) Circannual rhythms in birds. Curr Opin Neurobiol 13(6):770–778. https://doi.org/10.1016/j.conb.2003.10.010
Article CAS PubMed Google Scholar
Hamanaka Y, Hasebe M, Shiga S (2023) Neural mechanism of circadian clock-based photoperiodism in insects and snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. https://doi.org/10.1007/s00359-023-01662-6
Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC, Kelly JS, Maywood ES, Hastings MH (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109(4):497–508. https://doi.org/10.1016/s0092-8674(02)00736-5
Article CAS PubMed Google Scholar
Helfrich-Förster C, Täuber M, Park JH, Mühlig-Versen M, Schneuwly S, Hofbauer A (2000) Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J Neurosci 20(9):3339–3353. https://doi.org/10.1523/jneurosci.20-09-03339.2000
Article PubMed PubMed Central Google Scholar
Hidalgo S, Chiu JC (2023) Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. https://doi.org/10.1007/s00359-023-01667-1
Hidalgo S, Anguiano M, Tabuloc CA, Chiu JC (2023) Seasonal cues act through the circadian clock and pigment-dispersing factor to control EYES ABSENT and downstream physiological changes. Curr Biol 33(4):675-687.e675. https://doi.org/10.1016/j.cub.2023.01.006
Article CAS PubMed Google Scholar
Hofman MA, Swaab DF (1992) Seasonal changes in the suprachiasmatic nucleus of man. Neurosci Lett 139(2):257–260. https://doi.org/10.1016/0304-3940(92)90566-p
Article CAS PubMed Google Scholar
Hofman MA, Swaab DF (1994) Alterations in circadian rhythmicity of the vasopressin-producing neurons of the human suprachiasmatic nucleus (SCN) with aging. Brain Res 651(1):134–142. https://doi.org/10.1016/0006-8993(94)90689-0
Article CAS PubMed Google Scholar
Ikegami K, Refetoff S, Van Cauter E, Yoshimura T (2019) Interconnection between circadian clocks and thyroid function. Nat Rev Endocrinol 15(10):590–600. https://doi.org/10.1038/s41574-019-0237-z
Article PubMed PubMed Central Google Scholar
Illnerova H (1991) The suprachiasmatic nucleus and rhythmic pineal melatonin production. In: Klein DCMR, Reppert SM (eds) Suprachiasmatic Nucleus. Oxford University Press, New York, The Mind’s Clock, pp 197–216
Johnston JD, Tournier BB, Andersson H, Masson-Pévet M, Lincoln GA, Hazlerigg DG (2006) Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis. Endocrinology 147(2):959–965. https://doi.org/10.1210/en.2005-1100
Article CAS PubMed Google Scholar
Kantermann T, Juda M, Merrow M, Roenneberg T (2007) The human circadian clock’s seasonal adjustment is disrupted by daylight saving time. Curr Biol 17(22):1996–2000. https://doi.org/10.1016/j.cub.2007.10.025
Article CAS PubMed Google Scholar
Klett NJ, Allen CN (2017) Intracellular Chloride Regulation in AVP+ and VIP+ Neurons of the Suprachiasmatic Nucleus. Sci Rep 7(1):10226. https://doi.org/10.1038/s41598-017-09778-x
Article CAS PubMed PubMed Central Google Scholar
Kostál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52(2):113–127. https://doi.org/10.1016/j.jinsphys.2005.09.008
Article CAS PubMed Google Scholar
Kronfeld-Schor N, Visser ME, Salis L, van Gils JA (2017) Chronobiology of interspecific interactions in a changing world. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2016.0248
Article PubMed PubMed Central Google Scholar
Kronfeld-Schor N, Stevenson TJ, Nickbakhsh S, Schernhammer ES, Dopico XC, Dayan T, Martinez M, Helm B (2021) Drivers of infectious disease seasonality: potential implications for COVID-19. J Biol Rhythms 36(1):35–54. https://doi.org/10.1177/0748730420987322
Article CAS PubMed PubMed Central Google Scholar
Lincoln GA, Andersson H, Loudon A (2003) Clock genes in calendar cells as the basis of annual timekeeping in mammals–a unifying hypothesis. J Endocrinol 179(1):1–13. https://doi.org/10.1677/joe.0.1790001
Comments (0)